Research

From NANOxCOMP H2020 Project
(Difference between revisions)
Jump to: navigation, search
 
(74 intermediate revisions by one user not shown)
Line 1: Line 1:
Our research aims to develop novel ways of computing, circuit design, and reliability for electronic circuits and systems. Our research mainly targets future and emerging technologies.
+
We aim to develop a complete synthesis and performance optimization methodology for switching nano-crossbar arrays that leads to the design and construction of an emerging nanocomputer. Our objectives are 1) synthesizing Boolean functions with area optimization; 2) achieving fault tolerance; 3) performing performance optimization by considering area, delay, power, and accuracy; 4) implementing arithmetic and memory elements; and 5) realizing a synchronous state machine.  
  
 
<div style="float:center; font-size:110%; font-weight:bold; clear:both; padding:0; margin:0.0em;">__TOC__</div>
 
<div style="float:center; font-size:110%; font-weight:bold; clear:both; padding:0; margin:0.0em;">__TOC__</div>
Line 7: Line 7:
 
|-
 
|-
 
| colspan="2" style="background:#8FBCCF; text-align:center; padding:1px; border-bottom:1px #8FBCCF solid;" |
 
| colspan="2" style="background:#8FBCCF; text-align:center; padding:1px; border-bottom:1px #8FBCCF solid;" |
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Computing with Switching Nano Arrays </h2>
+
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Logic Synthesis </h2>
  
 
|-
 
|-
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
  
As current CMOS-based technology is approaching its anticipated limits, research is shifting to novel forms of nanoscale technologies including molecular-scale self-assembled systems. Unlike conventional CMOS that can be patterned in complex ways with lithography, self-assembled nanoscale systems generally consist of regular structures. Logical functions are achieved with crossbar-type switches. Our model, a network of four- terminal switches, corresponds to this type of switch in a variety of emerging technologies, including nanowire crossbar arrays and magnetic switch-based structures.
+
We study '''implementation of Boolean functions''' with nano-crossbar arrays where each crosspoint behaves as a diode, a FET, and a four-terminal switch. For these three types, we give array size formulations for a given Boolean function. Additionally, we focus on four-terminal switch based implementations and propose an algorithm that implements Boolean functions with '''optimal array sizes'''.
  
<h3>
+
[[Image:nanoarray_logic_synthesis.png|center|none|800px|link=]]
Synthesis</h3>
+
In his seminal Master's Thesis, [http://en.wikipedia.org/wiki/Claude_Shannon Claude Shannon] made the connection between Boolean algebra and switching circuits. He considered '''two-terminal''' switching networks to implement any Boolean function that is the foundation of CMOS circuit design techniques. In this work, we have considered '''four-terminal''' switching networks to implement any Boolean function that aims to be a foundation of nano array based circuit design techniques.
+
 
+
[[Image:Research-1.png|center|none|800px|link=]]
+
 
+
<h3>
+
Reliability</h3>
+
 
+
We have devised a novel framework for digital computation with networks of nanoscale switches with high defect rates, based on the mathematical phenomenon of [http://en.wikipedia.org/wiki/Percolation_theory percolation]. With random connectivity, percolation gives rise to a '''sharp non-linearity''' in the probability of global connectivity as a function of the probability of local connectivity. This phenomenon is exploited to compute Boolean functions robustly, in the presence of random defects.
+
  
[[Image:Research-2.png|center|none|800px|link=]]
 
  
 +
<!-- [[Image:Research-2.png|center|none|800px|link=]] -->
 
<!--        YAYIN      -->
 
<!--        YAYIN      -->
 
{| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
{| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
Line 39: Line 30:
 
| width="696" |'''Selected Publications'''
 
| width="696" |'''Selected Publications'''
 
|}
 
|}
 +
 
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
  
 
|
 
|
{|
+
{|  
 
|- valign=top
 
|- valign=top
 
| width="100" |'''title''':
 
| width="100" |'''title''':
| width="450"|[[Media:Altun_Riedel_Logic_Synthesis_for_Switching_Lattices.pdf | Logic Synthesis for Switching Lattices]]
+
| width="450"|[[Media:Bernasconi_EtAl_Synthesis_on_Switching_Lattices_D_Reducible.pdf | Synthesis on Switching Lattices of Dimension-Reducible Boolean Functions]]
 
|- valign="top"
 
|- valign="top"
 
| '''authors''':
 
| '''authors''':
| [[Mustafa Altun]] and [http://cadbio.com/wiki/index.php/Marc_Riedel Marc Riedel]
+
| Anna Bernasconi, Valentina Ciriani, Luca Frontini, and Gabriella Trucco
|- valign="top"
+
|- valign=top
| '''appeared&nbsp;in''':
+
| [http://www.computer.org/portal/web/tc IEEE Transactions on Computers], <br>Vol. 61, Issue 11, pp. 1588&ndash;1600, 2012.
+
|- valign="top"
+
 
| '''presented&nbsp;at''':
 
| '''presented&nbsp;at''':
| [http://www.dac.com Design Automation Conference], Anaheim, CA, 2010.
+
| width="450"| [http://ati.ttu.ee/vlsi-soc2016/ International Conference on Very Large Scale Integration (VLSI-SoC)], Tallinn, Estonia, 2016
|- valign="top"
+
| '''presented&nbsp;at''':
+
| [http://fias.uni-frankfurt.de/ International Conference on Computational Modelling of <br> Nanostructured Materials (ICCMNM)-FIAS], Frankfurt, Germany, 2013.
+
 
|}
 
|}
| align=center width="70" |
+
 
 +
| align=center width="70" |  
 
<span class="plainlinks">
 
<span class="plainlinks">
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/c/ca/Altun_Riedel_Logic_Synthesis_for_Switching_Lattices.pdf]]</span>
+
[[File:PDF.png|65px|link=http://www.nanoxcomp.itu.edu.tr/images/d/d5/Bernasconi_EtAl_Synthesis_on_Switching_Lattices_D_Reducible.pdf]]</span>
 
<br>
 
<br>
[[Media:Altun_Riedel_Logic_Synthesis_for_Switching_Lattices.pdf | Paper]]
+
[[Media:Bernasconi_EtAl_Synthesis_on_Switching_Lattices_D_Reducible.pdf | Paper]]
| align="center" width="70" |
+
| align="center" width="70" |  
 
<span class="plainlinks">
 
<span class="plainlinks">
  
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/2/28/Altun_Riedel_Lattice-Based_Computation_of_Boolean_Functions.ppt]]
+
[[File:PDF.png|65px|link=http://www.nanoxcomp.itu.edu.tr/images/a/a2/Bernasconi_EtAl_Synthesis_on_Switching_Lattices_D_Reducible_SLIDES.pdf]]
 
</span>
 
</span>
<br> [http://www.ecc.itu.edu.tr/images/2/28/Altun_Riedel_Lattice-Based_Computation_of_Boolean_Functions.ppt Slides]
+
<br> [[Media:Bernasconi_EtAl_Synthesis_on_Switching_Lattices_D_Reducible_SLIDES.pdf | Slides]]
 +
 
 
|}
 
|}
  
Line 78: Line 66:
 
|- valign=top
 
|- valign=top
 
| width="100" |'''title''':
 
| width="100" |'''title''':
| width="450"|[[Media:Altun_Riedel_Synthesizing_Logic_with_Percolation_in_Nanoscale_Lattices.pdf | Synthesizing Logic with Percolation in Nanoscale Lattices]]
+
| width="450"|[[Media:Altun_EtAl_Synthesis_and_Performance_Optimization_of_a_Switching_Nano-crossbar_Computer.pdf | Synthesis and Performance Optimization of a Switching Nano-crossbar Computer]]
 
|- valign="top"
 
|- valign="top"
 
| '''authors''':
 
| '''authors''':
| [[Mustafa Altun]] and [http://cadbio.com/wiki/index.php/Marc_Riedel Marc Riedel]
+
| width="450"| Dan Alexandrescu, Mustafa Altun, Lorena Anghel, Anna Bernasconi, Valentina Ciriani, and Mehdi Tahoori
|- valign="top"
+
| '''appeared&nbsp;in''':
+
| [http://www.igi-global.com/Bookstore/TitleDetails.aspx?TitleId=1117&DetailsType=Description/ International Journal of Nanotechnology and Molecular Computation], <br>Vol. 3, Issue 2, pp. 12&ndash;30, 2011.
+
 
|- valign=top
 
|- valign=top
 
| '''presented&nbsp;at''':
 
| '''presented&nbsp;at''':
| [http://www.dac.com Design Automation Conference], San Francisco, CA, 2009.
+
| width="450"| [http://dsd-seaa2016.cs.ucy.ac.cy/index.php Euromicro Conference on Digital System Design (DSD)], Limassol, Cyprus, 2016.
 
|}
 
|}
  
 
| align=center width="70" |
 
| align=center width="70" |
 
<span class="plainlinks">
 
<span class="plainlinks">
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/3/3b/Altun_Riedel_Synthesizing_Logic_with_Percolation_in_Nanoscale_Lattices.pdf]]</span>
+
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/a/ab/Altun_EtAl_Synthesis_and_Performance_Optimization_of_a_Switching_Nano-crossbar_Computer.pdf]]</span>
 
<br>
 
<br>
[[Media:Altun_Riedel_Synthesizing_Logic_with_Percolation_in_Nanoscale_Lattices.pdf | Paper]]
+
[[Media:Altun_EtAl_Synthesis_and_Performance_Optimization_of_a_Switching_Nano-crossbar_Computer.pdf | Paper]]
 
| align="center" width="70" |
 
| align="center" width="70" |
 
<span class="plainlinks">
 
<span class="plainlinks">
  
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/f/fe/Altun_Riedel_Neuhauser_Nanoscale_Digital_Computation_Through_Percolation.ppt]]
+
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/7/7f/Altun_EtAl_Synthesis_and_Performance_Optimization_of_a_Switching_Nano-crossbar_Computer_SLIDES.pdf]]
 
</span>
 
</span>
<br> [http://www.ecc.itu.edu.tr/images/f/fe/Altun_Riedel_Neuhauser_Nanoscale_Digital_Computation_Through_Percolation.ppt Slides]
+
<br> [[Media:Altun_EtAl_Synthesis_and_Performance_Optimization_of_a_Switching_Nano-crossbar_Computer_SLIDES.pdf | Slides]]
 
|}
 
|}
  
Line 113: Line 98:
  
 
|- valign=top
 
|- valign=top
| width="696" |'''Funding Projects'''
+
| width="696" |'''Developed Tools'''
 
|}
 
|}
 
{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
 
{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
  
 
|
 
|
{|
+
{|  
 
|- valign=top
 
|- valign=top
| width="140" |'''title''':
+
| width="100" |'''title''':
| width="558"|Synthesis and Reliability Analysis of Nano Switching Arrays
+
| width="524"|[[Media:Morgul_Altun_Optimal_Synthesis_Tools.zip | Optimal Synthesis Tool]]
 
|- valign="top"
 
|- valign="top"
| '''agency & program''':
+
| '''authors''':
| [http://www.tubitak.gov.tr/tr/destekler/akademik/ulusal-destek-programlari/icerik-3501-kariyer-gelistirme-programi TUBITAK Career Program (3501)]
+
| Ceylan Morgul and Mustafa Altun
 
|- valign="top"
 
|- valign="top"
| '''duration''':
+
| '''description''':
| 2014-2017
+
| width="524"| Two optimal synthesis tools Tool-1 and Tool-2 are developed in Matlab  and Python, respectively. Both tools aim to synthesize a given target Boolean functions with an optimal size of four-terminal switch based arrays . 
 +
|}
 +
| align=center width="70" |
 +
<span class="plainlinks">
 +
[[File:ZIP.png|65px|link=http://www.nanoxcomp.itu.edu.tr/images/b/b3/Morgul_Altun_Optimal_Synthesis_Tools.zip]]</span>
 +
<br>
 +
[[Media:Morgul_Altun_Optimal_Synthesis_Tools.zip | Tool]]
 
|}
 
|}
 
   
 
   
 
|}
 
|}
{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
 
  
|
 
{|
 
|- valign="top"
 
| width="140" |'''title''':
 
| width="558"|Logic Circuit Design for Nano Arrays
 
|- valign="top"
 
| '''agency & program''':
 
| [http://tubitak.gov.tr/tr/burslar/lisans/burs-programlari/2209-a TUBITAK Undergraduate Students Research Projects Support Program (2209/A)]
 
|- valign="top"
 
| '''duration''':
 
| 01/2014-07/2014
 
|}
 
 
 
|}
 
|}
  
|}
 
|}
 
 
|}
 
|}
  
  
<!--        RELIABILITY    -->
+
<!--        QUANTUM      -->
  
 
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 
|-
 
|-
 
| colspan="2" style="background:#8FBCBF; text-align:center; padding:1px; border-bottom:1px #8FBCBF solid;" |
 
| colspan="2" style="background:#8FBCBF; text-align:center; padding:1px; border-bottom:1px #8FBCBF solid;" |
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Reliability of Electronic Boards </h2>
+
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Fault Tolerance </h2>
 
|-
 
|-
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
  
The rapid developments in electronics, especially in the last decade, have initiated the inception of electronics reliability . Conventionally used accelerated reliability tests have lost their significance; time consuming and expensive feature of these tests is against the demands of today's very rapid electronic product cycles. In this study, we propose less costly, yet accurate, reliability prediction techniques using field return data, new accelerated test methodologies, and physics of failure based simulations. We cooperate with one of the Europe’s largest household appliances companies [http://www.arcelik.com.tr/default.aspx?lang=en-US Arçelik A.Ş.].
+
We examine reconfigurable crossbar arrays by considering randomly occurred '''stuck-open and stuck-closed crosspoint faults'''. In the presence of '''permanent''' faults, a fast and accurate heuristic algorithm is proposed that uses the techniques of index sorting, backtracking, and row matching. In the presence of '''transient''' faults, tolerance analysis is performed by formally and recursively determining tolerable fault positions
  
[[Image:Research-3.png|center|none|800px|link=]]
+
Since '''density''' feature of crossbar architectures is the main attracting point, we perform a detailed yield analysis by considering both uniform and non-uniform defect distributions.
 +
We formalize an approximate successful mapping probability metric for uniform distributions
 +
and determine '''area overheads'''.
  
<h3>
+
[[Image:nanoarray_fault_tolerance.png|center|none|500px|link=]]
Field Data Analysis and Prediction</h3>
+
  
We perform field return data analysis of electronic boards having two steps '''filtering''' and '''modeling'''. In the first step of filtering we eliminate improper data, consisting of obvious and hidden errors, from the whole field return data. In the second step of modeling, we use the filtered data to develop our piecewise reliability model. Our reliability analysis is based on a new technique that deals with forward and backward time analysis of the data.
 
 
We precisely predict the reliability performance of electronic boards throughout the warranty period by using very '''short-term field return data'''. For electronic boards targeted in this study, warranty period is 3 years, and we use field data of 3 months.
 
  
 +
<!-- [[Image:Research-4.png|center|none|800px|link=]] -->
 
<!--        YAYIN      -->
 
<!--        YAYIN      -->
 
{| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
{| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
Line 185: Line 159:
 
| width="696" |'''Selected Publications'''
 
| width="696" |'''Selected Publications'''
 
|}
 
|}
 
 
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 
 
|
 
|
{|
+
{|  
 
|- valign=top
 
|- valign=top
 
| width="100" |'''title''':
 
| width="100" |'''title''':
| width="450"|[[Media:Comert_Altun_Nadar_Erturk_Warranty_Forecasting_of_Electronic_Boards_using_Short-term_Field_Data.pdf | Warranty Forecasting of Electronic Boards using Short-term Field Data]]
+
| width="524"|[[Media:Tunali_Altun_Permanent_and_Transient_Fault_Tolerance_for_Reconfigurable_Nano-Crossbar_Arrays.pdf | Permanent and Transient Fault Tolerance for Reconfigurable Nano-Crossbar Arrays]]
 
|- valign="top"
 
|- valign="top"
 
| '''authors''':
 
| '''authors''':
| Vehbi Comert, [[Mustafa Altun]], [http://akademi.itu.edu.tr/nadar/ Mustafa Nadar], and Ertunc Erturk
+
| Onur Tunali and Mustafa Altun
|- valign=top
+
|- valign="top"
| '''presented&nbsp;at''':
+
| '''appeared&nbsp;in''':
| [http://rams.org/ Reliability and Maintainability Symposium], Palm Harbor, FL, 2015.
+
| width="524" | [http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems], Vol. 36, Issue 5, pp. 747–760, 2017.
 
|}
 
|}
 
+
| align=center width="70" |  
| align=center width="70" |
+
 
<span class="plainlinks">
 
<span class="plainlinks">
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/f/fd/Comert_Altun_Nadar_Erturk_Warranty_Forecasting_of_Electronic_Boards_using_Short-term_Field_Data.pdf]]</span>
+
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/c/cc/Tunali_Altun_Permanent_and_Transient_Fault_Tolerance_for_Reconfigurable_Nano-Crossbar_Arrays.pdf]]</span>
 
<br>
 
<br>
[[Media:Comert_Altun_Nadar_Erturk_Warranty_Forecasting_of_Electronic_Boards_using_Short-term_Field_Data.pdf| Paper]]
+
[[Media:Tunali_Altun_Permanent_and_Transient_Fault_Tolerance_for_Reconfigurable_Nano-Crossbar_Arrays.pdf | Paper]]
| align="center" width="70" |
+
<span class="plainlinks">
+
 
+
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/a/a7/Comert_Altun_Nadar_Erturk_Warranty_Forecasting_of_Electronic_Boards_using_Short-term_Field_Data.pptx]]
+
</span>
+
<br> [http://www.ecc.itu.edu.tr/images/a/a7/Comert_Altun_Nadar_Erturk_Warranty_Forecasting_of_Electronic_Boards_using_Short-term_Field_Data.pptx Slides]
+
 
|}
 
|}
  
Line 220: Line 185:
 
|- valign=top
 
|- valign=top
 
| width="100" |'''title''':
 
| width="100" |'''title''':
| width="450"|[[Media:Comert_Yadavari_Altun_Erturk_Reliability_Prediction_of_Electronic_Boards_by_Analyzing_Field_Return_Data.pdf | Reliability Prediction of Electronic Boards by Analyzing Field Return Data]]
+
| width="450"|[[Media:Tunali_Altun_Nano_Crossbar_Yield_Analysis.pdf| Yield Analysis of Nano-Crossbar Arrays for Uniform and Clustered Defect Distributions]]
 
|- valign="top"
 
|- valign="top"
 
| '''authors''':
 
| '''authors''':
| Vehbi Comert, Hadi Yadavari, [[Mustafa Altun]], and Ertunc Erturk
+
| Onur Tunali and [[Mustafa Altun]]
 
|- valign="top"
 
|- valign="top"
| '''presented&nbsp;at''':
+
| '''accepted&nbsp;at''':
| [http://www.esrel2014.org/ European Safety and Reliability Conference], Wroclaw ,Poland, 2014.
+
| width="450"| [http://icecs2017.org/ IEEE International Conference on Electronics Circuits and Systems (ICECS)], Batumi, Georgia, 2017.
 
|}
 
|}
 
| align=center width="70" |
 
| align=center width="70" |
 
<span class="plainlinks">
 
<span class="plainlinks">
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/d/d4/Comert_Yadavari_Altun_Erturk_Reliability_Prediction_of_Electronic_Boards_by_Analyzing_Field_Return_Data.pdf]]</span>
+
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/6/6b/Tunali_Altun_Nano_Crossbar_Yield_Analysis.pdf]]</span>
 
<br>
 
<br>
[[Media:Comert_Yadavari_Altun_Erturk_Reliability_Prediction_of_Electronic_Boards_by_Analyzing_Field_Return_Data.pdf | Paper]]
+
[[Media:Tunali_Altun_Nano_Crossbar_Yield_Analysis.pdf | Paper]]
 
| align="center" width="70" |
 
| align="center" width="70" |
 
<span class="plainlinks">
 
<span class="plainlinks">
  
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/e/eb/Comert_Yadavari_Altun_Erturk_Reliability_Prediction_of_Electronic_Boards_by_Analyzing_Field_Return_Data.pptx]]
+
[[File:PPT.jpg|60px|link=]]
 
</span>
 
</span>
<br> [http://www.ecc.itu.edu.tr/images/e/eb/Comert_Yadavari_Altun_Erturk_Reliability_Prediction_of_Electronic_Boards_by_Analyzing_Field_Return_Data.pptx Slides]
+
<br> Slides
 
|}
 
|}
  
 
|}
 
|}
 +
 
| style="border:1px solid transparent;" |
 
| style="border:1px solid transparent;" |
 
<!--        PROJE      -->
 
<!--        PROJE      -->
 
| class="MainPageBG" style="width:50%; border:0px solid #A9A9A9; vertical-align:top;"|
 
| class="MainPageBG" style="width:50%; border:0px solid #A9A9A9; vertical-align:top;"|
 
{| id="mp-right" style="width:100%; vertical-align:top;"
 
{| id="mp-right" style="width:100%; vertical-align:top;"
 +
 
|
 
|
  
Line 251: Line 218:
  
 
|- valign=top
 
|- valign=top
| width="696" |'''Funding Projects'''
+
| width="696" |'''Developed Tools'''
 
|}
 
|}
 
{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
 
{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
  
 
|
 
|
{|
+
{|  
 
|- valign=top
 
|- valign=top
| width="140" |'''title''':
+
| width="100" |'''title''':
| width="558"|A reliability Methodology for Appliance Electronic Cards
+
| width="524"|[[Media:Tunali_Altun_Fault_Tolerant_Logic_Mapping_Tool.zip | Fault Tolerant Logic Mapping Tool]]
 
|- valign="top"
 
|- valign="top"
| '''agency & program''':
+
| '''authors''':
| [http://www.tubitak.gov.tr/tr/destekler/akademik/ulusal-destek-programlari/icerik-1505-universite-sanayi-isbirligi-destek-programi TUBITAK University-Industry Collaboration Grant Program (1505)]
+
| Onur Tunali and Mustafa Altun
 
|- valign="top"
 
|- valign="top"
| '''duration''':
+
| '''description''':
| 2013-2015
+
| width="524"| The tool is developed in Matlab. It aims to map logic funtions into fault crossbars such that each crosspoint has an independent fault probability up to 20%.
 
|}
 
|}
+
| align=center width="70" |
 +
<span class="plainlinks">
 +
[[File:ZIP.png|65px|link=http://www.nanoxcomp.itu.edu.tr/images/1/16/Tunali_Altun_Fault_Tolerant_Logic_Mapping_Tool.zip]]</span>
 +
<br>
 +
[[Media:Tunali_Altun_Fault_Tolerant_Logic_Mapping_Tool.zip | Tool]]
 
|}
 
|}
 +
 
{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
 
{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
  
 
|
 
|
{|
+
{|  
 +
|- valign=top
 +
| width="100" |'''title''':
 +
| width="524"|[[Media:Tunali_Altun_Yield_Analysis_Tool.zip | Yield Analysis Tool]]
 
|- valign="top"
 
|- valign="top"
| width="140" |'''title''':
+
| '''authors''':
| width="558"|Gate Oxide Breakdown Failure Mechanism of CMOS Transistors
+
| Onur Tunali and Mustafa Altun
 
|- valign="top"
 
|- valign="top"
| '''agency & program''':
+
| '''description''':
| [http://www.tubitak.gov.tr/tr/burslar/lisans/burs-programlari/icerik-2209-b-sanayi-odakli-lisans-bitirme-tezi-destekleme-programi TUBITAK Industry Oriented Senior Project Support Program (2241/A)]
+
| width="524"| The tool is developed in Matlab. This tool calculates the required crossbar size in advance according to a given logic function and a defect rate. Tool accepts two parameters, logic function file and defect rate as inputs and returns the size of crossbar.
|- valign="top"
+
| '''duration''':
+
| 2013-2014
+
 
|}
 
|}
+
| align=center width="70" |
 +
<span class="plainlinks">
 +
[[File:ZIP.png|65px|link=http://www.nanoxcomp.itu.edu.tr/images/1/15/Tunali_Altun_Yield_Analysis_Tool.zip]]</span>
 +
<br>
 +
[[Media:Tunali_Altun_Yield_Analysis_Tool.zip | Tool]]
 
|}
 
|}
  
 
|}
 
|}
 +
 
|}
 
|}
 +
 
|}
 
|}
  
<!--        QUANTUM      -->
 
  
 +
<!--        STOCHASTIC      -->
  
 
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 
|-
 
|-
 
| colspan="2" style="background:#8FBCAF; text-align:center; padding:1px; border-bottom:1px #8FBCAF solid;" |
 
| colspan="2" style="background:#8FBCAF; text-align:center; padding:1px; border-bottom:1px #8FBCAF solid;" |
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Quantum Circuit Design </h2>
+
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Performance Modeling and Analysis </h2>
 
|-
 
|-
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
  
<h3>
+
We introduce an '''accurate capacitor-resistor model''' for nano-crossbar arrays that is to be used for '''power/delay/area''' performance analysis and optimization. In order to find capacitor and resistor values, we investigate upper/lower value limits for technology dependent parameters including doping concentration, nanowire dimension, pitch size, and layer thickness. We also use different fan-out capacitors to test the integration capability of these technologies.  
Synthesis and Optimization</h3>
+
 
+
We propose a fast synthesis algorithm that implements any given reversible Boolean function with quantum gates. Instead of an exhaustive search on every given function, our algorithm creates a library of '''essential functions''' and performs '''sorting'''. As an example, to implement 4 bit circuits we only use 120 essential functions out of all 20922789888000 functions.
+
  
By considering the physical structure of quantum gates, we show that optimum area solutions proposed in the literature are '''not actually optimum'''; they can be improved.
+
[[Image:nanoarray_RC_modeling.png|center|none|500px|link=]]
  
[[Image:Research-4.png|center|none|800px|link=]]
 
  
 
<!--        YAYIN      -->
 
<!--        YAYIN      -->
Line 324: Line 298:
  
 
|
 
|
{|
+
{|  
 
|- valign=top
 
|- valign=top
 
| width="100" |'''title''':
 
| width="100" |'''title''':
| width="450"|[[Media:Susam_Altun_An_Efficient_Algorithm_to_Synthesize_Quantum_Circuits_and_Optimization.pdf| An Efficient Algorithm to Synthesize Quantum Circuits and Optimization]]
+
| width="450"|[[Media:Morgul_Peker_Altun_Power-Delay-Area_Performance_Modeling_and_Analysis_for_Nano-Crossbar_Arrays.pdf | Power-Delay-Area Performance Modeling and Analysis for Nano-Crossbar Arrays]]
 
|- valign="top"
 
|- valign="top"
 
| '''authors''':
 
| '''authors''':
| Ömercan Susam and [[Mustafa Altun]]
+
| Ceylan Morgul, Furkan Peker, and Mustafa Altun
|- valign="top"
+
|- valign=top
 
| '''presented&nbsp;at''':
 
| '''presented&nbsp;at''':
| [http://www.ieee-icecs2014.org/ IEEE International Conference on Electronics Circuits and Systems],<br> Marseille, France, 2014.
+
| width="450"| [http://www.isvlsi.org/ IEEE Computer Society Annual Symposium on VLSI (ISVLSI)], Pittsburgh, USA, 2016.
 
|}
 
|}
| align=center width="70" |
+
 
 +
| align=center width="70" |  
 
<span class="plainlinks">
 
<span class="plainlinks">
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/7/71/Susam_Altun_An_Efficient_Algorithm_to_Synthesize_Quantum_Circuits_and_Optimization.pdf]]</span>
+
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/8/8f/Morgul_Peker_Altun_Power-Delay-Area_Performance_Modeling_and_Analysis_for_Nano-Crossbar_Arrays.pdf]]</span>
 
<br>
 
<br>
[[Media:Susam_Altun_An_Efficient_Algorithm_to_Synthesize_Quantum_Circuits_and_Optimization.pdf | Paper]]
+
[[Media:Morgul_Peker_Altun_Power-Delay-Area_Performance_Modeling_and_Analysis_for_Nano-Crossbar_Arrays.pdf | Paper]]
| align="center" width="70" |
+
| align="center" width="70" |  
 
<span class="plainlinks">
 
<span class="plainlinks">
  
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/d/d0/Susam_Altun_An_Efficient_Algorithm_to_Synthesize_Quantum_Circuits_and_Optimization.pptx]]
+
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/5/5a/Morgul_Peker_Altun_Power-Delay-Area_Performance_Modeling_and_Analysis_for_Nano-Crossbar_Arrays.pptx]]
 
</span>
 
</span>
<br> [http://www.ecc.itu.edu.tr/images/d/d0/Susam_Altun_An_Efficient_Algorithm_to_Synthesize_Quantum_Circuits_and_Optimization.pptx Slides]
+
<br> [http://www.ecc.itu.edu.tr/images/5/5a/Morgul_Peker_Altun_Power-Delay-Area_Performance_Modeling_and_Analysis_for_Nano-Crossbar_Arrays.pptx Poster]
 
|}
 
|}
 
 
|}
 
|}
  
 
| style="border:1px solid transparent;" |
 
| style="border:1px solid transparent;" |
 
<!--        PROJE      -->
 
<!--        PROJE      -->
| class="MainPageBG" style="width:50%; border:0px solid #A9A9A9; vertical-align:top;"|
+
 
{| id="mp-right" style="width:100%; vertical-align:top;"
+
|}
 +
|}
 +
 
 +
 
 +
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 +
|-
 +
| colspan="2" style="background:#8FBC9F; text-align:center; padding:1px; border-bottom:1px #8FBCAF solid;" |
 +
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Technology Development and Performance Optimization </h2>
 +
 
 +
|-
 +
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
 +
 
 +
Nano-crossbar arrays have emerged as a strong candidate technology to replace CMOS in near future. They are regular and dense structures. Computing with crossbar arrays is achieved by its crosspoints behaving as switches, either two-terminal or four-terminal. Depending on the technology used, a two-terminal switch behaves as a diode, a resistive/memristive switch, or a field effect transistor (FET). On the other hand, a four-terminal switch has a unique behavior. While there have been many different technologies proposed for two-terminal switch based arrays, technology development for four-terminal switch based arrays, called switching lattices, has recently started.
 +
 
 +
For both two-terminal and four-terminal switch based arrays, we aim to develop a complete synthesis and performance optimization methodology for switching nano-crossbar arrays that leads to the design and construction of an emerging nanocomputer. We also aim to develeop CMOS-compatible technologies for crossbar arrays, specifically for switching lattices.
 +
 
 +
[[Image:Research_nano-2019.png|center|none|800px|link=]]
 +
 
 +
<h3>
 +
Technology Development</h3>
 +
 
 +
Although a four-terminal switch based array offers a '''significant area advantage''', in terms of the number of switches, compared to the ones having two-terminal switches, its realization at the technology level needs
 +
further justifications and raises a number of questions about its
 +
feasibility. We answer these questions. First, by using
 +
three dimensional technology computer-aided design (TCAD)
 +
simulations, we show that '''four-terminal switches can be directly implemented with the CMOS technology'''. For this purpose, we
 +
try different semiconductor gate materials in different formations
 +
of geometric shapes. Then, by fitting the TCAD simulation data
 +
to the standard CMOS current-voltage equations, we develop a
 +
Spice model of a four-terminal switch. Finally, we successfully
 +
perform '''Spice circuit simulations on four-terminal switches''' with
 +
different sizes.
 +
[[Image:research_lattice_technology.png|center|none|800px|link=]]
 +
 
 +
<h3>
 +
Performance Optimization</h3>
 +
 
 +
We study crossbar arrays including the memristive ones. We
 +
propose a '''defect-tolerant logic synthesis algorithms by considering area, delay, and power costs''' of the arrays.
 +
<!-- [[Image:Research-2.png|center|none|800px|link=]] -->
 +
 
 +
 
 +
<!--        YAYIN      -->
 +
{| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 +
| class="MainPageBG" style="width:50%; border:0px solid #D8BFD8; vertical-align:top; color:#000;" |
 +
{| id="mp-left" style="width:100%; vertical-align:top;"
  
 
|
 
|
  
{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#d0e5f5; padding:0.2em 0.5em; font-weight:bold;"
+
{| style="border:1px solid #abd5f5; background:#d0e5f5; padding:0.2em 0.5em; font-weight:bold;"
  
 
|- valign=top
 
|- valign=top
| width="696" |'''Funding Projects'''
+
| width="696" |'''Selected Publications'''
 
|}
 
|}
{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
+
 
 +
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
  
 
|
 
|
 
{|
 
{|
 
|- valign=top
 
|- valign=top
| width="140" |'''title''':
+
| width="100" |'''title''':
| width="558"|Quantum Circuit Design and Computation
+
| width="450"|[[Media: Safaltin_EtAl_Technology_Development_for_Switching_Lattices.pdf| Realization of Four-Terminal Switching Lattices: Technology Development and Circuit Modeling]]
 
|- valign="top"
 
|- valign="top"
| '''agency & program''':
+
| '''authors''':
| [http://bap.itu.edu.tr/ Istanbul Technical University Research Support Program (ITU-BAP)]
+
| width="450"| Serzat Safaltin, Oguz Gencer, Ceylan Morgul, Levent Aksoy, Sebahattin Gurmen, Csaba Andras Moritz, and [[Mustafa Altun]]
|- valign="top"
+
|- valign=top
| '''duration''':
+
| '''presented&nbsp;at''':
| 2014-2015
+
| width="450"| [http://www.date-conference.com/ Design, Automation and Test in Europe (DATE)], Florence, Italy, 2019.
 
|}
 
|}
+
 
 +
| align=center width="70" |
 +
<span class="plainlinks">
 +
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/2/2c/Safaltin_EtAl_Technology_Development_for_Switching_Lattices.pdf]]</span>
 +
<br>
 +
[[Media:Safaltin_EtAl_Technology_Development_for_Switching_Lattices.pdf | Paper]]
 +
| align="center" width="70" |
 +
<span class="plainlinks">
 +
 
 +
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/7/71/Safaltin_EtAl_Technology_Development_for_Switching_Lattices.pptx]]
 +
</span>
 +
<br> [http://www.ecc.itu.edu.tr/images/7/71/Safaltin_EtAl_Technology_Development_for_Switching_Lattices.pptx Slides]
 
|}
 
|}
{| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;"
 
  
 +
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 
|
 
|
 
{|
 
{|
 +
|- valign=top
 +
| width="100" |'''title''':
 +
| width="450"|[[Media:Tunali_Morgul_Altun_Defect_Tolerant_Memristor_Crossbars.pdf | Defect Tolerant Logic Synthesis for Memristor Crossbars with Performance Evaluation]]
 
|- valign="top"
 
|- valign="top"
| width="140" |'''title''':
+
| '''authors''':
| width="558"|Synthesizing Quantum Circuits
+
| Onur Tunali and [[Mustafa Altun]]
 
|- valign="top"
 
|- valign="top"
| '''agency & program''':
+
| '''appeared&nbsp;in''':
| [http://tubitak.gov.tr/tr/burslar/lisansustu/egitim-burs-programlari/icerik-2211-yurt-ici-lisansustu-burs-programi TUBITAK MSc Scholarship Program in Priority Areas (2210/C)]
+
| width="450" | [http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=40 IEEE Micro], Vol. 38, Issue 5, pp. 22&ndash;31, 2018.
 
|- valign="top"
 
|- valign="top"
| '''duration''':
+
| '''presented&nbsp;at''':
| 2014-2015
+
| width="450"| [http://www.date-conference.com/ Design, Automation and Test in Europe (DATE)], Dresden, Germany, 2018.
 
|}
 
|}
+
| align=center width="70" |
 +
<span class="plainlinks">
 +
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/d/db/Tunali_Morgul_Altun_Defect_Tolerant_Memristor_Crossbars.pdf]]</span>
 +
<br>
 +
[[Media:Tunali_Morgul_Altun_Defect_Tolerant_Memristor_Crossbars.pdf | Paper]]
 +
| align="center" width="70" |
 +
<span class="plainlinks">
 +
 
 +
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/b/b8/Tunali_Altun_Logic_Synthesis_and_Defect_Tolerance_for_Memristive_Crossbars.pptx]]
 +
</span>
 +
<br> [http://www.ecc.itu.edu.tr/images/b/b8/Tunali_Altun_Logic_Synthesis_and_Defect_Tolerance_for_Memristive_Crossbars.pptx Slides]
 
|}
 
|}
 +
 +
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 +
 +
|
 +
{|
 +
|- valign=top
 +
| width="100" |'''title''':
 +
| width="450"|[[Media:Altun_EtAl_Synthesis_and_Testing_for_Switching_Nano_Crossbar_Arrays.pdf | Logic Synthesis and Testing Techniques for Switching Nano-Crossbar Arrays]]
 +
|- valign="top"
 +
| '''authors''':
 +
| width="450"| Dan Alexandrescu, [[Mustafa Altun]], Lorena Anghel, Anna Bernasconi, Valentina Ciriani, Luca Frontini, and Mehdi Tahoori
 +
|- valign=top
 +
| '''appeared&nbsp;in''':
 +
| width="450" | [http://www.journals.elsevier.com/microprocessors-and-microsystems/ Microprocessors and Microsystems], Vol. 54, pp. 14&ndash;25, 2017.
 +
|- valign="top"
 +
| '''presented&nbsp;at''':
 +
| width="450"| [http://dsd-seaa2016.cs.ucy.ac.cy/index.php Euromicro Conference on Digital System Design (DSD)], Limassol, Cyprus, 2016.
 
|}
 
|}
 +
 +
| align=center width="70" |
 +
<span class="plainlinks">
 +
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/0/0a/Altun_EtAl_Synthesis_and_Testing_for_Switching_Nano_Crossbar_Arrays.pdf]]</span>
 +
<br>
 +
[[Media:Altun_EtAl_Synthesis_and_Testing_for_Switching_Nano_Crossbar_Arrays.pdf | Paper]]
 +
| align="center" width="70" |
 +
<span class="plainlinks">
 +
 +
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/7/7f/Altun_EtAl_Synthesis_and_Performance_Optimization_of_a_Switching_Nano-crossbar_Computer_SLIDES.pdf]]
 +
</span>
 +
<br> [[Media:Altun_EtAl_Synthesis_and_Performance_Optimization_of_a_Switching_Nano-crossbar_Computer_SLIDES.pdf | Slides]]
 
|}
 
|}
 +
 +
<!--
 +
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 +
 +
|
 +
{|
 +
|- valign=top
 +
| width="100" |'''title''':
 +
| width="450"|[[Media:Altun_Riedel_Logic_Synthesis_for_Switching_Lattices.pdf | Logic Synthesis for Switching Lattices]]
 +
|- valign="top"
 +
| '''authors''':
 +
| [[Mustafa Altun]] and Marc Riedel
 +
|- valign="top"
 +
| '''appeared&nbsp;in''':
 +
| width="450"| [http://www.computer.org/portal/web/tc IEEE Transactions on Computers], Vol. 61, Issue 11, pp. 1588&ndash;1600, 2012.
 +
|- valign="top"
 +
| '''presented&nbsp;at''':
 +
| [http://www.dac.com Design Automation Conference (DAC)], Anaheim, USA, 2010.
 
|}
 
|}
 +
| align=center width="70" |
 +
<span class="plainlinks">
 +
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/c/ca/Altun_Riedel_Logic_Synthesis_for_Switching_Lattices.pdf]]</span>
 +
<br>
 +
[[Media:Altun_Riedel_Logic_Synthesis_for_Switching_Lattices.pdf | Paper]]
 +
| align="center" width="70" |
 +
<span class="plainlinks">
  
<!--        ANALOG      -->
+
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/2/28/Altun_Riedel_Lattice-Based_Computation_of_Boolean_Functions.ppt]]
 +
</span>
 +
<br> [http://www.ecc.itu.edu.tr/images/2/28/Altun_Riedel_Lattice-Based_Computation_of_Boolean_Functions.ppt Slides]
 +
|}
 +
-->
 +
|}
 +
| style="border:1px solid transparent;" |
 +
<!--        PROJE      -->
 +
 
 +
 
 +
|}
 +
|}
  
  
 
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 
|-
 
|-
| colspan="2" style="background:#8FBC9F; text-align:center; padding:1px; border-bottom:1px #8FBC9F solid;" |
+
| colspan="2" style="background:#8FBC8F; text-align:center; padding:1px; border-bottom:1px #8FBC9F solid;" |
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Analog Circuit Design </h2>
+
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Complete Synthesis Methodology </h2>
 
|-
 
|-
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
  
<h3>
+
Due to the stochastic nature
Positive Feedback</h3>
+
of nano-fabrication, nano arrays show different properties both
The conventional wisdom is that analog circuits should not include positive feedback loops. As controversial as it seems, we have successfully used '''positive feedback''' for impedance improvement in a current amplifier. With adding few transistors we have achieved very low input resistance values. Additionally, we have proposed a new fully-differential current amplifier and tested it in a filter application.
+
in structural and physical device levels compared to conventional
 +
technologies. Mentioned factors introduce random characteristics
 +
that need to be carefully considered by synthesis process. For instance, a competent synthesis methodology must consider basic
 +
technology preference for switching elements, defect or fault rates
 +
of the given nano switching array and the variation values as well
 +
as their effects on performance metrics including power, delay, and
 +
area. Presented synthesis methodology in this study comprehensively covers the all specified factors and provides optimization
 +
algorithms for each step of the process.
 +
 
 +
 
 +
[[Image:Research-synthesis-methodology.png|center|none|800px|link=]]
 +
 
  
 
<!--        YAYIN      -->
 
<!--        YAYIN      -->
Line 424: Line 544:
 
| width="696" |'''Selected Publications'''
 
| width="696" |'''Selected Publications'''
 
|}
 
|}
 +
 
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
 
{| style="border:1px solid #abd5f5; background:#f1f5fc;"
  
Line 430: Line 551:
 
|- valign=top
 
|- valign=top
 
| width="100" |'''title''':
 
| width="100" |'''title''':
| width="450"|[[Media:Altun_Kuntman_Design_of_a_Fully_Differential_Current_Mode_Operational_Amplifier_with_its_Filter_Applications.pdf | Design of a Fully Differential Current Mode Operational Amplifier with its Filter Applications]]
+
| width="450"|[[Media: Morgul_EtAl_Integrated_Synthesis_Methodology for_Crossbar_Arrays.pdf | Integrated Synthesis Methodology for Crossbar Arrays]]
 
|- valign="top"
 
|- valign="top"
 
| '''authors''':
 
| '''authors''':
| [[Mustafa Altun]] and [http://web.itu.edu.tr/~kuntman/ Hakan Kuntman]
+
| width="450"| Ceylan Morgul, Luca Frontini, Onur Tunali, Ioana Vatajelu, Valentina Ciriani, Lorena Anghel, Csaba Moritz, Mircea Stan, Dan Alexandrescu, and Mustafa Altun
|- valign="top"
+
| '''appeared&nbsp;in''':
+
| [http://www.sciencedirect.com/science/journal/14348411 AEU International Journal of Electronics and Communications], <br>Vol. 62, Issue 3, pp. 39&ndash;44, 2008.
+
 
|- valign="top"
 
|- valign="top"
 
| '''presented&nbsp;at''':
 
| '''presented&nbsp;at''':
| [http://www.glsvlsi.org/ ACM Great Lakes Symposium on VLSI (GLSVLSI)], Stresa, Italy, 2007.
+
| width="450"|[http://www.nanoarch.org/ IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)], Athens, Greece, 2018.
 
|}
 
|}
 +
 
| align=center width="70" |
 
| align=center width="70" |
 
<span class="plainlinks">
 
<span class="plainlinks">
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/e/e5/Altun_Kuntman_Design_of_a_Fully_Differential_Current_Mode_Operational_Amplifier_with_its_Filter_Applications.pdf]]</span>
+
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/b/b1/Morgul_EtAl_Integrated_Synthesis_Methodology_for_Crossbar_Arrays.pdf]]</span>
 
<br>
 
<br>
[[Media:Altun_Kuntman_Design_of_a_Fully_Differential_Current_Mode_Operational_Amplifier_with_its_Filter_Applications.pdf | Paper]]
+
[[Media: Morgul_EtAl_Integrated_Synthesis_Methodology_for_Crossbar_Arrays.pdf | Paper]]
 
| align="center" width="70" |
 
| align="center" width="70" |
 
<span class="plainlinks">
 
<span class="plainlinks">
  
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/7/77/Altun_Kuntman_A_Wideband_CMOS_Current-Mode_Operational_Amplifier_and_Its_Use_for_Band-Pass_Filter_Realization.ppt]]
+
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/b/bd/Morgul_EtAl_Integrated_Synthesis_Methodology_for_Crossbar_Arrays.pptx]]
 
</span>
 
</span>
<br> [http://www.ecc.itu.edu.tr/images/7/77/Altun_Kuntman_A_Wideband_CMOS_Current-Mode_Operational_Amplifier_and_Its_Use_for_Band-Pass_Filter_Realization.ppt Slides]
+
<br> [http://www.ecc.itu.edu.tr/images/b/bd/Morgul_EtAl_Integrated_Synthesis_Methodology_for_Crossbar_Arrays.pptx Slides]
 
|}
 
|}
  
 
|}
 
|}
| style="border:1px solid transparent;" |
 
<!--        PROJE      -->
 
 
|}
 
|}
 
 
<!--        MATHEMATICS      -->
 
  
  
 
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 
{| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;"
 
|-
 
|-
| colspan="2" style="background:#8FBC8F; text-align:center; padding:1px; border-bottom:1px #8FBC8F solid;" |
+
| colspan="2" style="background:#8FBC7F; text-align:center; padding:1px; border-bottom:1px #8FBC8F solid;" |
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Discrete Mathematics </h2>
+
<h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Crossbar Memories </h2>
 
|-
 
|-
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
  
<h3>
+
In this work, we investigated the sensing challenges of spin-transfer torque MRAMs structured as nano-crossbar memories. To overcome
Self Duality Problem</h3>
+
the problems of reading this type of memory, we have proposed a voltage sensing amplifier topology and compared its
 +
performance to that of the current sensing amplifier in terms of power, speed, and bit error rate performance.
 +
 
 +
[[Image:Crossbar-memory.png|center|none|500px|link=]]
  
The problem of testing whether a monotone Boolean function in irredundant disjuntive normal form (IDNF) is self-dual is one of few problems in circuit/time complexity whose precise tractability status is '''unknown'''. We have focused on this '''famous problem'''. We have shown that monotone self-dual Boolean functions in IDNF do not have more variables than disjuncts. We have proposed an algorithm to test whether a monotone Boolean function in IDNF with ''n'' variables and ''n'' disjuncts is self-dual. The algorithm runs in O(n^3) time.
 
 
<!--        YAYIN      -->
 
<!--        YAYIN      -->
 
{| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
 
{| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;"
Line 493: Line 607:
 
|- valign=top
 
|- valign=top
 
| width="100" |'''title''':
 
| width="100" |'''title''':
| width="450"|[[Media:Altun_Riedel_A_Study_on_Monotone_Self_Dual_Boolean_Functions.pdf | A Study on Monotone Self-dual Boolean Functions]]
+
| width="450"|[[Media:Atasoyu_Altun_Ozoguz_Sensing_Schemes_for_STT-MRAMs.pdf | Sensing Schemes for STT-MRAMs structured with high TMR in low RA MTJs]]
 
|- valign="top"
 
|- valign="top"
 
| '''authors''':
 
| '''authors''':
| [[Mustafa Altun]] and [http://cadbio.com/wiki/index.php/Marc_Riedel Marc Riedel]
+
| Mesut Atasoyu, Mustafa Altun, Serdar Ozoguz, and Kaushik Roy
 
|- valign="top"
 
|- valign="top"
| '''submitted &nbsp;to''':
+
| '''appeared&nbsp;in''':
| ..., 2014.
+
| width="450"| [http://www.journals.elsevier.com/microelectronics-journal Microelectronics Journal], accepted for publication, 2019.
 +
|- valign="top"
 +
| '''presented&nbsp;at''':
 +
| width="450"| [http://smacd2017.unisa.it/ International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)], Taormina, Italy, 2017.
 
|}
 
|}
 
| align=center width="70" |
 
| align=center width="70" |
 
<span class="plainlinks">
 
<span class="plainlinks">
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/5/53/Altun_Riedel_A_Study_on_Monotone_Self_Dual_Boolean_Functions.pdf]]</span>
+
[[File:PDF.png|65px|link=http://www.nanoxcomp.itu.edu.tr/images/a/af/Atasoyu_Altun_Ozoguz_Sensing_Schemes_for_STT-MRAMs.pdf]]</span>
 
<br>
 
<br>
[[Media:Altun_Riedel_A_Study_on_Monotone_Self_Dual_Boolean_Functions.pdf | Paper]]
+
[[Media:Atasoyu_Altun_Ozoguz_Sensing_Schemes_for_STT-MRAMs.pdf | Paper]]
 
| align="center" width="70" |
 
| align="center" width="70" |
 
<span class="plainlinks">
 
<span class="plainlinks">
  
[[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/1/18/Altun_Riedel_A_Study_on_Monotone_Self_Dual_Boolean_Functions.ppt]]
+
[[File:PPT.jpg|60px|link=http://www.nanoxcomp.itu.edu.tr/images/7/7a/Atasoyu_EtAl_Spin-Torque_Memristor_based_Offset_Cancellation.pptx]]
 
</span>
 
</span>
<br> [http://www.ecc.itu.edu.tr/images/1/18/Altun_Riedel_A_Study_on_Monotone_Self_Dual_Boolean_Functions.ppt Slides]
+
<br> [http://www.nanoxcomp.itu.edu.tr/images/7/7a/Atasoyu_EtAl_Spin-Torque_Memristor_based_Offset_Cancellation.pptx Slides]
 
|}
 
|}
  

Latest revision as of 18:00, 13 May 2019

We aim to develop a complete synthesis and performance optimization methodology for switching nano-crossbar arrays that leads to the design and construction of an emerging nanocomputer. Our objectives are 1) synthesizing Boolean functions with area optimization; 2) achieving fault tolerance; 3) performing performance optimization by considering area, delay, power, and accuracy; 4) implementing arithmetic and memory elements; and 5) realizing a synchronous state machine.

Contents

Logic Synthesis

We study implementation of Boolean functions with nano-crossbar arrays where each crosspoint behaves as a diode, a FET, and a four-terminal switch. For these three types, we give array size formulations for a given Boolean function. Additionally, we focus on four-terminal switch based implementations and propose an algorithm that implements Boolean functions with optimal array sizes.

Nanoarray logic synthesis.png


Selected Publications
title: Synthesis on Switching Lattices of Dimension-Reducible Boolean Functions
authors: Anna Bernasconi, Valentina Ciriani, Luca Frontini, and Gabriella Trucco
presented at: International Conference on Very Large Scale Integration (VLSI-SoC), Tallinn, Estonia, 2016

PDF.png
Paper

PDF.png
Slides

title: Synthesis and Performance Optimization of a Switching Nano-crossbar Computer
authors: Dan Alexandrescu, Mustafa Altun, Lorena Anghel, Anna Bernasconi, Valentina Ciriani, and Mehdi Tahoori
presented at: Euromicro Conference on Digital System Design (DSD), Limassol, Cyprus, 2016.

PDF.png
Paper

PDF.png
Slides

Developed Tools
title: Optimal Synthesis Tool
authors: Ceylan Morgul and Mustafa Altun
description: Two optimal synthesis tools Tool-1 and Tool-2 are developed in Matlab and Python, respectively. Both tools aim to synthesize a given target Boolean functions with an optimal size of four-terminal switch based arrays .

ZIP.png
Tool


Fault Tolerance

We examine reconfigurable crossbar arrays by considering randomly occurred stuck-open and stuck-closed crosspoint faults. In the presence of permanent faults, a fast and accurate heuristic algorithm is proposed that uses the techniques of index sorting, backtracking, and row matching. In the presence of transient faults, tolerance analysis is performed by formally and recursively determining tolerable fault positions

Since density feature of crossbar architectures is the main attracting point, we perform a detailed yield analysis by considering both uniform and non-uniform defect distributions. We formalize an approximate successful mapping probability metric for uniform distributions and determine area overheads.

Nanoarray fault tolerance.png


Selected Publications
title: Permanent and Transient Fault Tolerance for Reconfigurable Nano-Crossbar Arrays
authors: Onur Tunali and Mustafa Altun
appeared in: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 36, Issue 5, pp. 747–760, 2017.

PDF.png
Paper

title: Yield Analysis of Nano-Crossbar Arrays for Uniform and Clustered Defect Distributions
authors: Onur Tunali and Mustafa Altun
accepted at: IEEE International Conference on Electronics Circuits and Systems (ICECS), Batumi, Georgia, 2017.

PDF.png
Paper

PPT.jpg
Slides

Developed Tools
title: Fault Tolerant Logic Mapping Tool
authors: Onur Tunali and Mustafa Altun
description: The tool is developed in Matlab. It aims to map logic funtions into fault crossbars such that each crosspoint has an independent fault probability up to 20%.

ZIP.png
Tool

title: Yield Analysis Tool
authors: Onur Tunali and Mustafa Altun
description: The tool is developed in Matlab. This tool calculates the required crossbar size in advance according to a given logic function and a defect rate. Tool accepts two parameters, logic function file and defect rate as inputs and returns the size of crossbar.

ZIP.png
Tool


Performance Modeling and Analysis

We introduce an accurate capacitor-resistor model for nano-crossbar arrays that is to be used for power/delay/area performance analysis and optimization. In order to find capacitor and resistor values, we investigate upper/lower value limits for technology dependent parameters including doping concentration, nanowire dimension, pitch size, and layer thickness. We also use different fan-out capacitors to test the integration capability of these technologies.

Nanoarray RC modeling.png


Selected Publications
title: Power-Delay-Area Performance Modeling and Analysis for Nano-Crossbar Arrays
authors: Ceylan Morgul, Furkan Peker, and Mustafa Altun
presented at: IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pittsburgh, USA, 2016.

PDF.png
Paper

PPT.jpg
Poster


Technology Development and Performance Optimization

Nano-crossbar arrays have emerged as a strong candidate technology to replace CMOS in near future. They are regular and dense structures. Computing with crossbar arrays is achieved by its crosspoints behaving as switches, either two-terminal or four-terminal. Depending on the technology used, a two-terminal switch behaves as a diode, a resistive/memristive switch, or a field effect transistor (FET). On the other hand, a four-terminal switch has a unique behavior. While there have been many different technologies proposed for two-terminal switch based arrays, technology development for four-terminal switch based arrays, called switching lattices, has recently started.

For both two-terminal and four-terminal switch based arrays, we aim to develop a complete synthesis and performance optimization methodology for switching nano-crossbar arrays that leads to the design and construction of an emerging nanocomputer. We also aim to develeop CMOS-compatible technologies for crossbar arrays, specifically for switching lattices.

Research nano-2019.png

Technology Development

Although a four-terminal switch based array offers a significant area advantage, in terms of the number of switches, compared to the ones having two-terminal switches, its realization at the technology level needs further justifications and raises a number of questions about its feasibility. We answer these questions. First, by using three dimensional technology computer-aided design (TCAD) simulations, we show that four-terminal switches can be directly implemented with the CMOS technology. For this purpose, we try different semiconductor gate materials in different formations of geometric shapes. Then, by fitting the TCAD simulation data to the standard CMOS current-voltage equations, we develop a Spice model of a four-terminal switch. Finally, we successfully perform Spice circuit simulations on four-terminal switches with different sizes.

Research lattice technology.png

Performance Optimization

We study crossbar arrays including the memristive ones. We propose a defect-tolerant logic synthesis algorithms by considering area, delay, and power costs of the arrays.


Selected Publications
title: Realization of Four-Terminal Switching Lattices: Technology Development and Circuit Modeling
authors: Serzat Safaltin, Oguz Gencer, Ceylan Morgul, Levent Aksoy, Sebahattin Gurmen, Csaba Andras Moritz, and Mustafa Altun
presented at: Design, Automation and Test in Europe (DATE), Florence, Italy, 2019.

PDF.png
Paper

PPT.jpg
Slides

title: Defect Tolerant Logic Synthesis for Memristor Crossbars with Performance Evaluation
authors: Onur Tunali and Mustafa Altun
appeared in: IEEE Micro, Vol. 38, Issue 5, pp. 22–31, 2018.
presented at: Design, Automation and Test in Europe (DATE), Dresden, Germany, 2018.

PDF.png
Paper

PPT.jpg
Slides

title: Logic Synthesis and Testing Techniques for Switching Nano-Crossbar Arrays
authors: Dan Alexandrescu, Mustafa Altun, Lorena Anghel, Anna Bernasconi, Valentina Ciriani, Luca Frontini, and Mehdi Tahoori
appeared in: Microprocessors and Microsystems, Vol. 54, pp. 14–25, 2017.
presented at: Euromicro Conference on Digital System Design (DSD), Limassol, Cyprus, 2016.

PDF.png
Paper

PDF.png
Slides



Complete Synthesis Methodology

Due to the stochastic nature of nano-fabrication, nano arrays show different properties both in structural and physical device levels compared to conventional technologies. Mentioned factors introduce random characteristics that need to be carefully considered by synthesis process. For instance, a competent synthesis methodology must consider basic technology preference for switching elements, defect or fault rates of the given nano switching array and the variation values as well as their effects on performance metrics including power, delay, and area. Presented synthesis methodology in this study comprehensively covers the all specified factors and provides optimization algorithms for each step of the process.


Research-synthesis-methodology.png


Selected Publications
title: Integrated Synthesis Methodology for Crossbar Arrays
authors: Ceylan Morgul, Luca Frontini, Onur Tunali, Ioana Vatajelu, Valentina Ciriani, Lorena Anghel, Csaba Moritz, Mircea Stan, Dan Alexandrescu, and Mustafa Altun
presented at: IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), Athens, Greece, 2018.

PDF.png
Paper

PPT.jpg
Slides


Crossbar Memories

In this work, we investigated the sensing challenges of spin-transfer torque MRAMs structured as nano-crossbar memories. To overcome the problems of reading this type of memory, we have proposed a voltage sensing amplifier topology and compared its performance to that of the current sensing amplifier in terms of power, speed, and bit error rate performance.

Crossbar-memory.png
Selected Publications
title: Sensing Schemes for STT-MRAMs structured with high TMR in low RA MTJs
authors: Mesut Atasoyu, Mustafa Altun, Serdar Ozoguz, and Kaushik Roy
appeared in: Microelectronics Journal, accepted for publication, 2019.
presented at: International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Taormina, Italy, 2017.

PDF.png
Paper

PPT.jpg
Slides

Personal tools
Namespaces

Variants
Actions
NANOxCOMP
Toolbox