Main Page

From NANOxCOMP H2020 Project
(Difference between revisions)
Jump to: navigation, search
Line 9: Line 9:
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
 
| valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> |
  
Nano-crossbar arrays have emerged as a strong candidate technology to replace CMOS in near future. They are regular and dense structures, and fabricated by exploiting self-assembly as opposed to purely using lithography based conventional and relatively costly CMOS fabrication techniques. Currently, nano-crossbar arrays are fabricated such that each crosspoint can be used as a conventional electronic component such as a diode, a FET, or a switch. This is a unique opportunity that allows us to integrate well developed conventional circuit design techniques into nano-crossbar arrays. Motivated by this, we aim to develop a complete synthesis and performance optimization methodology for switching nano-crossbar arrays that leads to the design and construction of an emerging nanocomputer.
+
TEST Nano-crossbar arrays have emerged as a strong candidate technology to replace CMOS in near future. They are regular and dense structures, and fabricated by exploiting self-assembly as opposed to purely using lithography based conventional and relatively costly CMOS fabrication techniques. Currently, nano-crossbar arrays are fabricated such that each crosspoint can be used as a conventional electronic component such as a diode, a FET, or a switch. This is a unique opportunity that allows us to integrate well developed conventional circuit design techniques into nano-crossbar arrays. Motivated by this, we aim to develop a complete synthesis and performance optimization methodology for switching nano-crossbar arrays that leads to the design and construction of an emerging nanocomputer.
  
 
Project objectives are 1) synthesizing Boolean functions with area optimization; 2) achieving fault tolerance; 3) performing performance optimization by considering area, delay, power, and accuracy; 4) implementing arithmetic and memory elements; and 5) realizing a synchronous state machine.
 
Project objectives are 1) synthesizing Boolean functions with area optimization; 2) achieving fault tolerance; 3) performing performance optimization by considering area, delay, power, and accuracy; 4) implementing arithmetic and memory elements; and 5) realizing a synchronous state machine.

Revision as of 12:20, 19 July 2017

Welcome to the NANOxCOMP Project

TEST Nano-crossbar arrays have emerged as a strong candidate technology to replace CMOS in near future. They are regular and dense structures, and fabricated by exploiting self-assembly as opposed to purely using lithography based conventional and relatively costly CMOS fabrication techniques. Currently, nano-crossbar arrays are fabricated such that each crosspoint can be used as a conventional electronic component such as a diode, a FET, or a switch. This is a unique opportunity that allows us to integrate well developed conventional circuit design techniques into nano-crossbar arrays. Motivated by this, we aim to develop a complete synthesis and performance optimization methodology for switching nano-crossbar arrays that leads to the design and construction of an emerging nanocomputer.

Project objectives are 1) synthesizing Boolean functions with area optimization; 2) achieving fault tolerance; 3) performing performance optimization by considering area, delay, power, and accuracy; 4) implementing arithmetic and memory elements; and 5) realizing a synchronous state machine.


Research-nanoarray-1.png

Project details

title: Synthesis and Performance Optimization of a Switching Nano-Crossbar Computer
acronym: NANOxCOMP
principal investigator / coordinator: Mustafa Altun, ECC Group, Istanbul Technical University
partner(s):
funding agency & program: European Union/European Commission H2020 MSCA Research and Innovation Staff Exchange Program (RISE)
budget: 724.500 EURO
duration: 2015-2019


This project
  • gathers globally leading research groups working on nanoelectronics and EDA;
  • targets variety of emerging technologies including nanowire/nanotube crossbar arrays, magnetic switch-based structures, and crossbar memories; and
  • contributes to the construction of emerging computers beyond CMOS by proposing nano-crossbar based computer architectures.
Nanoxcomp logo.png


PRESENTATIONS

  • PPT.jpg
    Slides
  • SPACE
  • PDF.png
    Poster

  • Project news

    • We present our work "Composition of Switching Lattices and Autosymmetric Boolean Function Synthesis" in DSD 2017.
    • We present our work "Spintronic Memristor based Offset Cancellation Technique for Sense Amplifiers" in SMACD 2017.
    • We successfully have our midterm review meeting in Lausanne, Switzerland on March 2017. For the agenda click here.
    • We present our work "Computing with Nano-Crossbar Arrays: Logic Synthesis and Fault Tolerance" in a premier conference on electronic design automation DATE 2017.
    • Our paper is accepted in a leading journal in design automation IEEE TCAD.
    • We present our work "Synthesis on Switching Lattices of Dimension-Reducible Boolean Functions" in VLSI-Soc 2016.
    • We present our project and our work on logic synthesis of switching nanoarrays in DSD 2016.
    • We present our work "Power-Delay-Area Performance Modeling and Analysis for Nano-Crossbar Arrays" in IEEE-ISVLSI 2016.
    • We give an invited talk "Circuit Design and Optimization of Nano-Crossbar Arrays" in NanoTR-12.
    • We give a plenary talk "Implementation of a Switching Nano-Crossbar Computer" in ACS 2016.
    • We present and exhibit our EU H2020 project NANOxCOMP in a premier conference on electronic design automation DATE 2016 with over 1000 attendees from academia and industry.


    Nanoxcomp partners.png

    This project has received funding from the European Union's H2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 691178.
    Retrieved from "https://www.nanoxcomp.itu.edu.tr/index.php?title=Main_Page&oldid=2643"
    Personal tools
    Namespaces

    Variants
    Actions
    NANOxCOMP
    Toolbox