ELE 523E
From NANOxCOMP H2020 Project
(Difference between revisions)
(→Course Materials) |
|||
Line 110: | Line 110: | ||
== Course Materials == | == Course Materials == | ||
− | {| border="1" cellspacing="0" cellpadding=" | + | {| border="1" cellspacing="0" cellpadding="4" " width="80%" |
− | !Lecture Slides !! Lecture Slides !! | + | !Lecture Slides !! Lecture Slides !! Homeworks !! Presentations & Exams & Projects |
|- | |- | ||
− | | [[Media:ele523e-2016-fall-w1-introduction.pptx | W1: Introduction]] || [[Media:ele523e-2016-fall- | + | | [[Media:ele523e-2016-fall-w1-introduction.pptx | W1: Introduction]] || [[Media:ele523e-2016-fall-w6-probabilistic-computing.pptx | W6: Probabilistic Computing]] || || [[Media:ele523e-2016-fall-hw-01.pdf | Homework 1]] || |
|- | |- | ||
− | | [[Media:ele523e-2016-fall-w2-emerging-computing.pptx | W2: Emerging Computing]] || | + | | [[Media:ele523e-2016-fall-w2-emerging-computing.pptx | W2: Emerging Computing]] || [[Media:ele523e-2016-fall-w7-approximate-computing-and-Bayesian-networks.pptx | W7: Approximate Computing & Bayesian Networks]] || || [[Media:ele523e-2016-fall-hw-02.pdf | Homework 2]] || |
|- | |- | ||
− | | [[Media:ele523e-2016-fall-w3-reversible-quantum-computing.pptx | W3: Reversible Quantum Computing]] || [[Media:ele523e-2016-fall- | + | | [[Media:ele523e-2016-fall-w3-reversible-quantum-computing.pptx | W3: Reversible Quantum Computing]] || [[Media:ele523e-2016-fall-w9-fault-analysis.pptx | W9: Faults and Their Analysis]] || || [[Media:ele523e-2016-fall-hw-03.pdf | Homework 3]] || |
|- | |- | ||
− | | [[Media:ele523e-2016-fall-w4-molecular-computing.pptx | W4: Molecular Computing]] || [[Media:ele523e-2016-fall- | + | | [[Media:ele523e-2016-fall-w4-molecular-computing.pptx | W4: Molecular Computing]] || || || || |
+ | |- | ||
+ | | [[Media:ele523e-2016-fall-w5-nano-array-based-computing.pptx | W5: Nanoarray based Computing]] || || || || | ||
+ | |||
|} | |} |
Revision as of 12:14, 14 November 2016
Contents |
Announcements
- Oct. 30th The third homework has been posted that is due 21/11/2016 before 13:30.
- Oct. 26th To see your grades click here.
- Oct. 17th The second homework has been posted that is due 31/10/2016 before 13:30.
- Oct. 2nd The first homework has been posted that is due 17/10/2016 before 13:30.
- Sept. 19th The class is given in the room Z2 (ground floor), EEF.
Overview
As current CMOS based technologies are approaching their anticipated limits, emerging nanotechnologies are expected to replace their role in electronic circuits. This course overviews nanoelectronic circuits in a comparison with those of conventional CMOS-based. Deterministic and probobalistic emerging computing models are investigated. Regarding the interdisciplinary nature of emerging technologies, this course is appropriate for graduate students in different majors including electronics engineering, control engineering, computer science, applied physics, and mathematics. No prior course is required; only basic (college-level) knowledge in circuit design and mathematics is assumed. Topics that are covered include:
- Circuit elements and devices in computational nanoelectronics (in comparison with CMOS) including nano-crossbar switches, reversible quantum gates, approximate circuits and systems, and emerging transistors.
- Introduction of emerging computing models in circuit level.
- Analysis and synthesis of deterministic and probabilistic models.
- Performance of the computing models regarding area, power, speed, and accuracy.
- Uncertainty and faults: fault analysis and tolerance techniques for permanent and transient faults.
Syllabus
ELE 523E: Computational Nanoelectronics, CRN: 15371, Mondays 13:30-16:30, Room: Z2 (Ground Floor-EEF), Fall 2016.
Instructor
|
|
Grading
|
|
Reference Books
|
|
Policies
|
|
Weekly Course Plan
Date
|
Topic
|
Week 1, 19/9/2016 | Introduction |
Week 2, 26/9/2016 | Overview of emerging nanoscale devices and switches |
Week 3, 3/10/2016 | Reversible quantum computing, reversible circuit analysis and synthesis |
Weeks 4, 10/10/2016 | Molecular computing with individual molecules and DNA strand displacement |
Weeks 5, 17/10/2016 | Computing and logic synthesis with switching nano arrays |
Week 6, 24/10/2016 | Probabilistic/Stochastic computing with random bit streams and probabilistic switches |
Weeks 7, 31/10/2016 | Approximate computing and Bayesian networks |
Week 8, 7/11/2016 | HOLIDAY, no class |
Week 9, 14/11/2016 | Defects, faults, errors, and their analysis |
Weeks 10, 21/11/2016 | Post-fabrication (pre-field) tolerance techniques for permanent faults in nanoelectronics |
Week 11, 28/11/2016 | In field tolerance techniques for transient faults in nanoelectronics |
Week 12, 6/12/2016 | MIDTERM |
Weeks 13, 13/12/2016 | Overview of the midterm, the presentation schedule, and the final project |
Weeks 14, 20/12/2016 | Student presentations |
Weeks 15, 27/12/2016 | Student presentations |
Course Materials
Lecture Slides | Lecture Slides | Homeworks | Presentations & Exams & Projects | |
---|---|---|---|---|
W1: Introduction | W6: Probabilistic Computing | Homework 1 | ||
W2: Emerging Computing | W7: Approximate Computing & Bayesian Networks | Homework 2 | ||
W3: Reversible Quantum Computing | W9: Faults and Their Analysis | Homework 3 | ||
W4: Molecular Computing | ||||
W5: Nanoarray based Computing |