Research
(→Self-Duality Problem) |
|||
Line 1: | Line 1: | ||
− | Our research | + | Our research aims to develop novel ways of computing, circuit design, and reliability for electronic circuits and systems. Our research mainly targets future and emerging technologies. |
− | == | + | <div style="float:center; font-size:110%; font-weight:bold; clear:both; padding:0; margin:0.0em;">__TOC__</div> |
+ | <h5> | ||
+ | </h5> | ||
+ | {| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;" | ||
+ | |- | ||
+ | | colspan="2" style="background:#8FBCCF; text-align:center; padding:1px; border-bottom:1px #8FBCCF solid;" | | ||
+ | <h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Computing with Switching Nano Arrays </h2> | ||
− | + | |- | |
+ | | valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> | | ||
− | + | As current CMOS-based technology is approaching its anticipated limits, research is shifting to novel forms of nanoscale technologies including molecular-scale self-assembled systems. Unlike conventional CMOS that can be patterned in complex ways with lithography, self-assembled nanoscale systems generally consist of regular structures. Logical functions are achieved with crossbar-type switches. Our model, a network of four- terminal switches, corresponds to this type of switch in a variety of emerging technologies, including nanowire crossbar arrays and magnetic switch-based structures. | |
− | In his seminal Master's Thesis, [http://en.wikipedia.org/wiki/Claude_Shannon Claude Shannon] made the connection between Boolean algebra and switching circuits. He considered '''two-terminal''' | + | |
+ | <h3> | ||
+ | Synthesis</h3> | ||
+ | In his seminal Master's Thesis, [http://en.wikipedia.org/wiki/Claude_Shannon Claude Shannon] made the connection between Boolean algebra and switching circuits. He considered '''two-terminal''' switching networks to implement any Boolean function that is the foundation of CMOS circuit design techniques. In this work, we have considered '''four-terminal''' switching networks to implement any Boolean function that aims to be a foundation of nano array based circuit design techniques. | ||
+ | |||
+ | [[Image:Research-1.png|center|none|800px|link=]] | ||
+ | |||
+ | <h3> | ||
+ | Reliability</h3> | ||
+ | |||
+ | We have devised a novel framework for digital computation with networks of nanoscale switches with high defect rates, based on the mathematical phenomenon of [http://en.wikipedia.org/wiki/Percolation_theory percolation]. With random connectivity, percolation gives rise to a '''sharp non-linearity''' in the probability of global connectivity as a function of the probability of local connectivity. This phenomenon is exploited to compute Boolean functions robustly, in the presence of random defects. | ||
+ | |||
+ | [[Image:Research-2.png|center|none|800px|link=]] | ||
+ | |||
+ | <!-- YAYIN --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | | class="MainPageBG" style="width:50%; border:0px solid #D8BFD8; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top;" | ||
− | |||
| | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{| style="border:1px solid #abd5f5; background:#d0e5f5; padding:0.2em 0.5em; font-weight:bold;" | {| style="border:1px solid #abd5f5; background:#d0e5f5; padding:0.2em 0.5em; font-weight:bold;" | ||
|- valign=top | |- valign=top | ||
− | | width="696" |'''Selected | + | | width="696" |'''Selected Publications''' |
|} | |} | ||
{| style="border:1px solid #abd5f5; background:#f1f5fc;" | {| style="border:1px solid #abd5f5; background:#f1f5fc;" | ||
| | | | ||
− | {| | + | {| |
|- valign=top | |- valign=top | ||
| width="100" |'''title''': | | width="100" |'''title''': | ||
Line 38: | Line 55: | ||
| '''presented at''': | | '''presented at''': | ||
| [http://www.dac.com Design Automation Conference], Anaheim, CA, 2010. | | [http://www.dac.com Design Automation Conference], Anaheim, CA, 2010. | ||
+ | |- valign="top" | ||
+ | | '''presented at''': | ||
+ | | [http://fias.uni-frankfurt.de/ International Conference on Computational Modelling of <br> Nanostructured Materials (ICCMNM)-FIAS], Frankfurt, Germany, 2013. | ||
|} | |} | ||
− | | align=center width="70" | | + | | align=center width="70" | |
<span class="plainlinks"> | <span class="plainlinks"> | ||
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/c/ca/Altun_Riedel_Logic_Synthesis_for_Switching_Lattices.pdf]]</span> | [[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/c/ca/Altun_Riedel_Logic_Synthesis_for_Switching_Lattices.pdf]]</span> | ||
<br> | <br> | ||
[[Media:Altun_Riedel_Logic_Synthesis_for_Switching_Lattices.pdf | Paper]] | [[Media:Altun_Riedel_Logic_Synthesis_for_Switching_Lattices.pdf | Paper]] | ||
− | | align="center" width="70" | | + | | align="center" width="70" | |
<span class="plainlinks"> | <span class="plainlinks"> | ||
Line 52: | Line 72: | ||
|} | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{| style="border:1px solid #abd5f5; background:#f1f5fc;" | {| style="border:1px solid #abd5f5; background:#f1f5fc;" | ||
| | | | ||
− | {| | + | {| |
|- valign=top | |- valign=top | ||
| width="100" |'''title''': | | width="100" |'''title''': | ||
Line 83: | Line 90: | ||
|} | |} | ||
− | | align=center width="70" | | + | | align=center width="70" | |
<span class="plainlinks"> | <span class="plainlinks"> | ||
[[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/3/3b/Altun_Riedel_Synthesizing_Logic_with_Percolation_in_Nanoscale_Lattices.pdf]]</span> | [[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/3/3b/Altun_Riedel_Synthesizing_Logic_with_Percolation_in_Nanoscale_Lattices.pdf]]</span> | ||
<br> | <br> | ||
[[Media:Altun_Riedel_Synthesizing_Logic_with_Percolation_in_Nanoscale_Lattices.pdf | Paper]] | [[Media:Altun_Riedel_Synthesizing_Logic_with_Percolation_in_Nanoscale_Lattices.pdf | Paper]] | ||
− | | align="center" width="70" | | + | | align="center" width="70" | |
<span class="plainlinks"> | <span class="plainlinks"> | ||
Line 96: | Line 103: | ||
|} | |} | ||
+ | |} | ||
+ | | style="border:1px solid transparent;" | | ||
+ | <!-- PROJE --> | ||
+ | | class="MainPageBG" style="width:50%; border:0px solid #A9A9A9; vertical-align:top;"| | ||
+ | {| id="mp-right" style="width:100%; vertical-align:top;" | ||
+ | | | ||
− | = | + | {| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#d0e5f5; padding:0.2em 0.5em; font-weight:bold;" |
− | === | + | |- valign=top |
+ | | width="696" |'''Funding Projects''' | ||
+ | |} | ||
+ | {| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;" | ||
− | + | | | |
+ | {| | ||
+ | |- valign=top | ||
+ | | width="140" |'''title''': | ||
+ | | width="558"|Synthesis and Reliability Analysis of Nano Switching Arrays | ||
+ | |- valign="top" | ||
+ | | '''agency & program''': | ||
+ | | [http://www.tubitak.gov.tr/tr/destekler/akademik/ulusal-destek-programlari/icerik-3501-ulusal-genc-arastirmaci-kariyer-gelistirme-programi TUBITAK Career Program (3501)] | ||
+ | |- valign="top" | ||
+ | | '''duration''': | ||
+ | | 2014-2017 | ||
+ | |} | ||
+ | |||
+ | |} | ||
+ | {| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;" | ||
+ | |||
+ | | | ||
+ | {| | ||
+ | |- valign="top" | ||
+ | | width="140" |'''title''': | ||
+ | | width="558"|Logic Circuit Design for Nano Arrays | ||
+ | |- valign="top" | ||
+ | | '''agency & program''': | ||
+ | | [http://tubitak.gov.tr/tr/burslar/lisans/burs-programlari/2209-a TUBITAK Undergraduate Students Research Projects Support Program (2209/A)] | ||
+ | |- valign="top" | ||
+ | | '''duration''': | ||
+ | | 01/2014-07/2014 | ||
+ | |} | ||
+ | |||
+ | |} | ||
+ | |||
+ | |} | ||
+ | |} | ||
+ | |} | ||
+ | |||
+ | |||
+ | <!-- RELIABILITY --> | ||
+ | |||
+ | {| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;" | ||
+ | |- | ||
+ | | colspan="2" style="background:#8FBCBF; text-align:center; padding:1px; border-bottom:1px #8FBCBF solid;" | | ||
+ | <h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Reliability of Electronic Boards </h2> | ||
+ | |- | ||
+ | | valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> | | ||
+ | |||
+ | The rapid developments in electronics, especially in the last decade, have initiated the inception of electronics reliability . Conventionally used accelerated reliability tests have lost their significance; time consuming and expensive feature of these tests is against the demands of today's very rapid electronic product cycles. In this study, we propose less costly, yet accurate, reliability prediction techniques using field return data, new accelerated test methodologies, and physics of failure based simulations. We cooperate with one of the Europe’s largest household appliances companies [http://www.arcelik.com.tr/default.aspx?lang=en-US Arçelik A.Ş.]. | ||
+ | |||
+ | [[Image:Research-3.png|center|none|800px|link=]] | ||
+ | |||
+ | <h3> | ||
+ | Field Data Analysis and Prediction</h3> | ||
+ | |||
+ | We perform field return data analysis of electronic boards having two steps '''filtering''' and '''modeling'''. In the first step of filtering we eliminate improper data, consisting of obvious and hidden errors, from the whole field return data. In the second step of modeling, we use the filtered data to develop our piecewise reliability model. Our reliability analysis is based on a new technique that deals with forward and backward time analysis of the data. | ||
+ | |||
+ | We precisely predict the reliability performance of electronic boards throughout the warranty period by using very '''short-term field return data'''. For electronic boards targeted in this study, warranty period is 3 years, and we use field data of 3 months. | ||
+ | |||
+ | <!-- YAYIN --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | | class="MainPageBG" style="width:50%; border:0px solid #D8BFD8; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top;" | ||
+ | |||
+ | | | ||
{| style="border:1px solid #abd5f5; background:#d0e5f5; padding:0.2em 0.5em; font-weight:bold;" | {| style="border:1px solid #abd5f5; background:#d0e5f5; padding:0.2em 0.5em; font-weight:bold;" | ||
|- valign=top | |- valign=top | ||
− | | width="696" |'''Selected | + | | width="696" |'''Selected Publications''' |
|} | |} | ||
{| style="border:1px solid #abd5f5; background:#f1f5fc;" | {| style="border:1px solid #abd5f5; background:#f1f5fc;" | ||
| | | | ||
− | {| | + | {| |
|- valign=top | |- valign=top | ||
| width="100" |'''title''': | | width="100" |'''title''': | ||
− | | width=" | + | | width="450"|[[Media:Comert_Yadavari_Altun_Erturk_Reliability_Prediction_of_Electronic_Boards_by_Analyzing_Field_Return_Data.pdf | Reliability Prediction of Electronic Boards by Analyzing Field Return Data]] |
− | |- valign=top | + | |- valign="top" |
| '''authors''': | | '''authors''': | ||
− | | [[Mustafa Altun]] and | + | | Vehbi Comert, Hadi Yadavari, [[Mustafa Altun]], and Ertunc Erturk |
|- valign="top" | |- valign="top" | ||
− | | ''' | + | | '''presented at''': |
− | | .. | + | | [http://www.esrel2014.org/ European Safety and Reliability Conference], Wroclaw ,Poland, 2014. |
|} | |} | ||
+ | | align=center width="70" | | ||
+ | <span class="plainlinks"> | ||
+ | [[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/d/d4/Comert_Yadavari_Altun_Erturk_Reliability_Prediction_of_Electronic_Boards_by_Analyzing_Field_Return_Data.pdf]]</span> | ||
+ | <br> | ||
+ | [[Media:Comert_Yadavari_Altun_Erturk_Reliability_Prediction_of_Electronic_Boards_by_Analyzing_Field_Return_Data.pdf | Paper]] | ||
+ | | align="center" width="70" | | ||
+ | <span class="plainlinks"> | ||
− | | align=center width="70" | | + | [[File:PPT.jpg|60px|link=]] |
+ | </span> | ||
+ | <br> Slides | ||
+ | |} | ||
+ | |||
+ | {| style="border:1px solid #abd5f5; background:#f1f5fc;" | ||
+ | |||
+ | | | ||
+ | {| | ||
+ | |- valign=top | ||
+ | | width="100" |'''title''': | ||
+ | | width="450"|[[Media:Comert_Altun_Nadar_Erturk_Warranty_Forecasting_of_Electronic_Boards_using_Short-term_Field_Data.pdf | Warranty Forecasting of Electronic Boards using Short-term Field Data]] | ||
+ | |- valign="top" | ||
+ | | '''authors''': | ||
+ | | Vehbi Comert, [[Mustafa Altun]], [http://akademi.itu.edu.tr/nadar/ Mustafa Nadar], and Ertunc Erturk | ||
+ | |- valign=top | ||
+ | | '''accepted at''': | ||
+ | | [http://rams.org/ Reliability and Maintainability Symposium], Palm Harbor, FL, 2015. | ||
+ | |} | ||
+ | |||
+ | | align=center width="70" | | ||
+ | <span class="plainlinks"> | ||
+ | [[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/f/fd/Comert_Altun_Nadar_Erturk_Warranty_Forecasting_of_Electronic_Boards_using_Short-term_Field_Data.pdf]]</span> | ||
+ | <br> | ||
+ | [[Media:Comert_Altun_Nadar_Erturk_Warranty_Forecasting_of_Electronic_Boards_using_Short-term_Field_Data.pdf| Abstract]] | ||
+ | | align="center" width="70" | | ||
<span class="plainlinks"> | <span class="plainlinks"> | ||
− | [[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/ | + | [[File:PPT.jpg|60px|link=]] |
+ | </span> | ||
+ | <br> Slides | ||
+ | |} | ||
+ | |||
+ | |} | ||
+ | | style="border:1px solid transparent;" | | ||
+ | <!-- PROJE --> | ||
+ | | class="MainPageBG" style="width:50%; border:0px solid #A9A9A9; vertical-align:top;"| | ||
+ | {| id="mp-right" style="width:100%; vertical-align:top;" | ||
+ | | | ||
+ | |||
+ | {| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#d0e5f5; padding:0.2em 0.5em; font-weight:bold;" | ||
+ | |||
+ | |- valign=top | ||
+ | | width="696" |'''Funding Projects''' | ||
+ | |} | ||
+ | {| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;" | ||
+ | |||
+ | | | ||
+ | {| | ||
+ | |- valign=top | ||
+ | | width="140" |'''title''': | ||
+ | | width="558"|A reliability Methodology for Appliance Electronic Cards | ||
+ | |- valign="top" | ||
+ | | '''agency & program''': | ||
+ | | [http://www.tubitak.gov.tr/tr/destekler/akademik/ulusal-destek-programlari/icerik-1505-universite-sanayi-isbirligi-destek-programi TUBITAK University-Industry Collaboration Grant Program (1505)] | ||
+ | |- valign="top" | ||
+ | | '''duration''': | ||
+ | | 2013-2015 | ||
+ | |} | ||
+ | |||
+ | |} | ||
+ | {| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;" | ||
+ | |||
+ | | | ||
+ | {| | ||
+ | |- valign="top" | ||
+ | | width="140" |'''title''': | ||
+ | | width="558"|Gate Oxide Breakdown Failure Mechanism of CMOS Transistors | ||
+ | |- valign="top" | ||
+ | | '''agency & program''': | ||
+ | | [http://www.tubitak.gov.tr/tr/burslar/lisans/burs-programlari/icerik-2209-b-sanayi-odakli-lisans-bitirme-tezi-destekleme-programi TUBITAK Industry Oriented Senior Project Support Program (2241/A)] | ||
+ | |- valign="top" | ||
+ | | '''duration''': | ||
+ | | 2013-2014 | ||
+ | |} | ||
+ | |||
+ | |} | ||
+ | |||
+ | |} | ||
+ | |} | ||
+ | |} | ||
+ | |||
+ | <!-- QUANTUM --> | ||
+ | |||
+ | |||
+ | {| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;" | ||
+ | |- | ||
+ | | colspan="2" style="background:#8FBCAF; text-align:center; padding:1px; border-bottom:1px #8FBCAF solid;" | | ||
+ | <h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Quantum Circuit Design </h2> | ||
+ | |- | ||
+ | | valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> | | ||
+ | |||
+ | <h3> | ||
+ | Synthesis and Optimization</h3> | ||
+ | |||
+ | We propose a fast synthesis algorithm that implements any given reversible Boolean function with quantum gates. Instead of an exhaustive search on every given function, our algorithm creates a library of '''essential functions''' and performs '''sorting'''. As an example, to implement 4 bit circuits we only use 120 essential functions out of all 20922789888000 functions. | ||
+ | |||
+ | By considering the physical structure of quantum gates, we show that optimum area solutions proposed in the literature are '''not actually optimum'''; they can be improved. | ||
+ | |||
+ | [[Image:Research-4.png|center|none|800px|link=]] | ||
+ | |||
+ | <!-- YAYIN --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | | class="MainPageBG" style="width:50%; border:0px solid #D8BFD8; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top;" | ||
+ | |||
+ | | | ||
+ | |||
+ | {| style="border:1px solid #abd5f5; background:#d0e5f5; padding:0.2em 0.5em; font-weight:bold;" | ||
+ | |||
+ | |- valign=top | ||
+ | | width="696" |'''Selected Publications''' | ||
+ | |} | ||
+ | {| style="border:1px solid #abd5f5; background:#f1f5fc;" | ||
+ | |||
+ | | | ||
+ | {| | ||
+ | |- valign=top | ||
+ | | width="100" |'''title''': | ||
+ | | width="450"|[[Media:Susam_Altun_An_Efficient_Algorithm_to_Synthesize_Quantum_Circuits_and_Optimization.pdf| An Efficient Algorithm to Synthesize Quantum Circuits and Optimization]] | ||
+ | |- valign="top" | ||
+ | | '''authors''': | ||
+ | | Ömercan Susam and [[Mustafa Altun]] | ||
+ | |- valign="top" | ||
+ | | '''submitted to''': | ||
+ | | [http://www.ieee-icecs2014.org/ IEEE International Conference on Electronics Circuits and Systems],<br> Marseille, France, 2014. | ||
+ | |} | ||
+ | | align=center width="70" | | ||
+ | <span class="plainlinks"> | ||
+ | [[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/7/71/Susam_Altun_An_Efficient_Algorithm_to_Synthesize_Quantum_Circuits_and_Optimization.pdf]]</span> | ||
<br> | <br> | ||
− | [[Media: | + | [[Media:Susam_Altun_An_Efficient_Algorithm_to_Synthesize_Quantum_Circuits_and_Optimization.pdf | Paper]] |
+ | | align="center" width="70" | | ||
+ | <span class="plainlinks"> | ||
+ | |||
+ | [[File:PPT.jpg|60px|link=]] | ||
+ | </span> | ||
+ | <br> Slides | ||
|} | |} | ||
− | + | |} | |
− | === | + | | style="border:1px solid transparent;" | |
− | The conventional wisdom is that analog circuits should not include positive feedback loops. As controversial as it seems, we have successfully used '''positive feedback''' for impedance improvement in a current amplifier. With adding few transistors we have achieved very low input resistance values. | + | <!-- PROJE --> |
+ | | class="MainPageBG" style="width:50%; border:0px solid #A9A9A9; vertical-align:top;"| | ||
+ | {| id="mp-right" style="width:100%; vertical-align:top;" | ||
+ | |||
+ | | | ||
+ | |||
+ | {| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#d0e5f5; padding:0.2em 0.5em; font-weight:bold;" | ||
+ | |||
+ | |- valign=top | ||
+ | | width="696" |'''Funding Projects''' | ||
+ | |} | ||
+ | {| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;" | ||
+ | |||
+ | | | ||
+ | {| | ||
+ | |- valign=top | ||
+ | | width="140" |'''title''': | ||
+ | | width="558"|Quantum Circuit Design and Computation | ||
+ | |- valign="top" | ||
+ | | '''agency & program''': | ||
+ | | [http://bap.itu.edu.tr/ Istanbul Technical University Research Support Program (ITU-BAP)] | ||
+ | |- valign="top" | ||
+ | | '''duration''': | ||
+ | | 2014-2015 | ||
+ | |} | ||
+ | |||
+ | |} | ||
+ | {| style="margin-left: auto; margin-right: 0px; border:1px solid #abd5f5; background:#f1f5fc;" | ||
+ | |||
+ | | | ||
+ | {| | ||
+ | |- valign="top" | ||
+ | | width="140" |'''title''': | ||
+ | | width="558"|Synthesizing Quantum Circuits | ||
+ | |- valign="top" | ||
+ | | '''agency & program''': | ||
+ | | [http://tubitak.gov.tr/tr/burslar/lisansustu/egitim-burs-programlari/icerik-2211-yurt-ici-lisansustu-burs-programi TUBITAK MSc Scholarship Program in Priority Areas (2210/C)] | ||
+ | |- valign="top" | ||
+ | | '''duration''': | ||
+ | | 2014-2015 | ||
+ | |} | ||
+ | |||
+ | |} | ||
+ | |} | ||
+ | |} | ||
+ | |} | ||
+ | |||
+ | <!-- ANALOG --> | ||
+ | |||
+ | |||
+ | {| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;" | ||
+ | |- | ||
+ | | colspan="2" style="background:#8FBC9F; text-align:center; padding:1px; border-bottom:1px #8FBC9F solid;" | | ||
+ | <h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Analog Circuit Design </h2> | ||
+ | |- | ||
+ | | valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> | | ||
+ | |||
+ | <h3> | ||
+ | Positive Feedback</h3> | ||
+ | The conventional wisdom is that analog circuits should not include positive feedback loops. As controversial as it seems, we have successfully used '''positive feedback''' for impedance improvement in a current amplifier. With adding few transistors we have achieved very low input resistance values. Additionally, we have proposed a new fully-differential current amplifier and tested it in a filter application. | ||
+ | |||
+ | <!-- YAYIN --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | | class="MainPageBG" style="width:50%; border:0px solid #D8BFD8; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top;" | ||
+ | |||
+ | | | ||
{| style="border:1px solid #abd5f5; background:#d0e5f5; padding:0.2em 0.5em; font-weight:bold;" | {| style="border:1px solid #abd5f5; background:#d0e5f5; padding:0.2em 0.5em; font-weight:bold;" | ||
|- valign=top | |- valign=top | ||
− | | width="696" |'''Selected | + | | width="696" |'''Selected Publications''' |
|} | |} | ||
{| style="border:1px solid #abd5f5; background:#f1f5fc;" | {| style="border:1px solid #abd5f5; background:#f1f5fc;" | ||
| | | | ||
− | {| | + | {| |
|- valign=top | |- valign=top | ||
| width="100" |'''title''': | | width="100" |'''title''': | ||
− | | width=" | + | | width="450"|[[Media:Altun_Kuntman_Design_of_a_Fully_Differential_Current_Mode_Operational_Amplifier_with_its_Filter_Applications.pdf | Design of a Fully Differential Current Mode Operational Amplifier with its Filter Applications]] |
|- valign="top" | |- valign="top" | ||
| '''authors''': | | '''authors''': | ||
| [[Mustafa Altun]] and [http://web.itu.edu.tr/~kuntman/ Hakan Kuntman] | | [[Mustafa Altun]] and [http://web.itu.edu.tr/~kuntman/ Hakan Kuntman] | ||
|- valign="top" | |- valign="top" | ||
− | | '''appeared in''': | + | | '''appeared in''': |
| [http://www.sciencedirect.com/science/journal/14348411 AEU International Journal of Electronics and Communications], <br>Vol. 62, Issue 3, pp. 39–44, 2008. | | [http://www.sciencedirect.com/science/journal/14348411 AEU International Journal of Electronics and Communications], <br>Vol. 62, Issue 3, pp. 39–44, 2008. | ||
+ | |- valign="top" | ||
+ | | '''presented at''': | ||
+ | | [http://www.glsvlsi.org/ ACM Great Lakes Symposium on VLSI (GLSVLSI)], Stresa, Italy, 2007. | ||
|} | |} | ||
− | + | | align=center width="70" | | |
− | | align=center width="70" | | + | <span class="plainlinks"> |
+ | [[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/c/ca/Altun_Kuntman_Design_of_a_Fully_Differential_Current_Mode_Operational_Amplifier_with_its_Filter_Applications.pdf]]</span> | ||
+ | <br> | ||
+ | [[Media:Altun_Kuntman_Design_of_a_Fully_Differential_Current_Mode_Operational_Amplifier_with_its_Filter_Applications.pdf | Paper]] | ||
+ | | align="center" width="70" | | ||
<span class="plainlinks"> | <span class="plainlinks"> | ||
− | [[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/ | + | [[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/7/77/Altun_Kuntman_A_Wideband_CMOS_Current-Mode_Operational_Amplifier_and_Its_Use_for_Band-Pass_Filter_Realization.ppt]] |
+ | </span> | ||
+ | <br> [http://www.ecc.itu.edu.tr/images/7/77/Altun_Kuntman_A_Wideband_CMOS_Current-Mode_Operational_Amplifier_and_Its_Use_for_Band-Pass_Filter_Realization.ppt Slides] | ||
+ | |} | ||
+ | |||
+ | |} | ||
+ | | style="border:1px solid transparent;" | | ||
+ | <!-- PROJE --> | ||
+ | |||
+ | |} | ||
+ | |} | ||
+ | |||
+ | <!-- MATHEMATICS --> | ||
+ | |||
+ | |||
+ | {| id=portal cellspacing="0" cellpadding="0" width=100% style="border:1px solid #B8C7D9; padding:0px;" | ||
+ | |- | ||
+ | | colspan="2" style="background:#8FBC8F; text-align:center; padding:1px; border-bottom:1px #8FBC8F solid;" | | ||
+ | <h2 style="margin:.1em; border-bottom:1px; font-size:140%; font-weight:bold;"> Discrete Mathematics </h2> | ||
+ | |- | ||
+ | | valign="top" style="padding:8px 8px 0px 8px; background:#f5fffa;" <!--H210 S4 V100--> | | ||
+ | |||
+ | <h3> | ||
+ | Self Duality Problem</h3> | ||
+ | |||
+ | The problem of testing whether a monotone Boolean function in irredundant disjuntive normal form (IDNF) is self-dual is one of few problems in circuit/time complexity whose precise tractability status is '''unknown'''. We have focused on this '''famous problem'''. We have shown that monotone self-dual Boolean functions in IDNF do not have more variables than disjuncts. We have proposed an algorithm to test whether a monotone Boolean function in IDNF with ''n'' variables and ''n'' disjuncts is self-dual. The algorithm runs in O(n^3) time. | ||
+ | <!-- YAYIN --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | | class="MainPageBG" style="width:50%; border:0px solid #D8BFD8; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top;" | ||
+ | |||
+ | | | ||
+ | |||
+ | {| style="border:1px solid #abd5f5; background:#d0e5f5; padding:0.2em 0.5em; font-weight:bold;" | ||
+ | |||
+ | |- valign=top | ||
+ | | width="696" |'''Selected Publications''' | ||
+ | |} | ||
+ | {| style="border:1px solid #abd5f5; background:#f1f5fc;" | ||
+ | |||
+ | | | ||
+ | {| | ||
+ | |- valign=top | ||
+ | | width="100" |'''title''': | ||
+ | | width="450"|[[Media:Altun_Riedel_A_Study_on_Monotone_Self_Dual_Boolean_Functions.pdf | A Study on Monotone Self-dual Boolean Functions]] | ||
+ | |- valign="top" | ||
+ | | '''authors''': | ||
+ | | [[Mustafa Altun]] and [http://cadbio.com/wiki/index.php/Marc_Riedel Marc Riedel] | ||
+ | |- valign="top" | ||
+ | | '''submitted to''': | ||
+ | | ..., 2014. | ||
+ | |} | ||
+ | | align=center width="70" | | ||
+ | <span class="plainlinks"> | ||
+ | [[File:PDF.png|65px|link=http://www.ecc.itu.edu.tr/images/5/53/Altun_Riedel_A_Study_on_Monotone_Self_Dual_Boolean_Functions.pdf]]</span> | ||
<br> | <br> | ||
− | [[Media: | + | [[Media:Altun_Riedel_A_Study_on_Monotone_Self_Dual_Boolean_Functions.pdf | Paper]] |
+ | | align="center" width="70" | | ||
+ | <span class="plainlinks"> | ||
+ | |||
+ | [[File:PPT.jpg|60px|link=http://www.ecc.itu.edu.tr/images/1/18/Altun_Riedel_A_Study_on_Monotone_Self_Dual_Boolean_Functions.ppt]] | ||
+ | </span> | ||
+ | <br> [http://www.ecc.itu.edu.tr/images/1/18/Altun_Riedel_A_Study_on_Monotone_Self_Dual_Boolean_Functions.ppt Slides] | ||
+ | |} | ||
+ | |||
+ | |} | ||
+ | | style="border:1px solid transparent;" | | ||
+ | <!-- PROJE --> | ||
+ | |||
+ | |} | ||
|} | |} |
Revision as of 21:21, 3 July 2014
Our research aims to develop novel ways of computing, circuit design, and reliability for electronic circuits and systems. Our research mainly targets future and emerging technologies.
Contents |
Computing with Switching Nano Arrays | |||||||||||||||||||||||||||||||||||||||||||||
As current CMOS-based technology is approaching its anticipated limits, research is shifting to novel forms of nanoscale technologies including molecular-scale self-assembled systems. Unlike conventional CMOS that can be patterned in complex ways with lithography, self-assembled nanoscale systems generally consist of regular structures. Logical functions are achieved with crossbar-type switches. Our model, a network of four- terminal switches, corresponds to this type of switch in a variety of emerging technologies, including nanowire crossbar arrays and magnetic switch-based structures. SynthesisIn his seminal Master's Thesis, Claude Shannon made the connection between Boolean algebra and switching circuits. He considered two-terminal switching networks to implement any Boolean function that is the foundation of CMOS circuit design techniques. In this work, we have considered four-terminal switching networks to implement any Boolean function that aims to be a foundation of nano array based circuit design techniques. ReliabilityWe have devised a novel framework for digital computation with networks of nanoscale switches with high defect rates, based on the mathematical phenomenon of percolation. With random connectivity, percolation gives rise to a sharp non-linearity in the probability of global connectivity as a function of the probability of local connectivity. This phenomenon is exploited to compute Boolean functions robustly, in the presence of random defects.
|
Reliability of Electronic Boards | |||||||||||||||||||||||||||||||||||||||
The rapid developments in electronics, especially in the last decade, have initiated the inception of electronics reliability . Conventionally used accelerated reliability tests have lost their significance; time consuming and expensive feature of these tests is against the demands of today's very rapid electronic product cycles. In this study, we propose less costly, yet accurate, reliability prediction techniques using field return data, new accelerated test methodologies, and physics of failure based simulations. We cooperate with one of the Europe’s largest household appliances companies Arçelik A.Ş.. Field Data Analysis and PredictionWe perform field return data analysis of electronic boards having two steps filtering and modeling. In the first step of filtering we eliminate improper data, consisting of obvious and hidden errors, from the whole field return data. In the second step of modeling, we use the filtered data to develop our piecewise reliability model. Our reliability analysis is based on a new technique that deals with forward and backward time analysis of the data. We precisely predict the reliability performance of electronic boards throughout the warranty period by using very short-term field return data. For electronic boards targeted in this study, warranty period is 3 years, and we use field data of 3 months.
|
Quantum Circuit Design | ||||||||||||||||||||||||||||||
Synthesis and OptimizationWe propose a fast synthesis algorithm that implements any given reversible Boolean function with quantum gates. Instead of an exhaustive search on every given function, our algorithm creates a library of essential functions and performs sorting. As an example, to implement 4 bit circuits we only use 120 essential functions out of all 20922789888000 functions. By considering the physical structure of quantum gates, we show that optimum area solutions proposed in the literature are not actually optimum; they can be improved.
|
Analog Circuit Design | |||||||||||||||
Positive FeedbackThe conventional wisdom is that analog circuits should not include positive feedback loops. As controversial as it seems, we have successfully used positive feedback for impedance improvement in a current amplifier. With adding few transistors we have achieved very low input resistance values. Additionally, we have proposed a new fully-differential current amplifier and tested it in a filter application.
|
Discrete Mathematics | |||||||||||||
Self Duality ProblemThe problem of testing whether a monotone Boolean function in irredundant disjuntive normal form (IDNF) is self-dual is one of few problems in circuit/time complexity whose precise tractability status is unknown. We have focused on this famous problem. We have shown that monotone self-dual Boolean functions in IDNF do not have more variables than disjuncts. We have proposed an algorithm to test whether a monotone Boolean function in IDNF with n variables and n disjuncts is self-dual. The algorithm runs in O(n^3) time.
|