ELE 523E
From NANOxCOMP H2020 Project
(Difference between revisions)
(→Weekly Course Plan) |
(→Announcements) |
||
(178 intermediate revisions by one user not shown) | |||
Line 1: | Line 1: | ||
+ | {{DISPLAYTITLE: ELE 523E: Computational Nanoelectronics}} | ||
== Announcements == | == Announcements == | ||
− | * <span style="background:#4682B4; color:#FFFFFF; font-size: 100%;"> | + | |
− | * <span style="background:#4682B4; color:#FFFFFF; font-size: 100%;"> Nov. | + | * <span style="background:#4682B4; color:#FFFFFF; font-size: 100%;"> Jan. 14th</span> To see your final grades [[Media:ele523e-2016-fall-grades.pdf | '''click here''']]. |
− | * <span style="background:#4682B4; color:#FFFFFF; font-size: 100%;"> Oct. | + | * <span style="background:#4682B4; color:#FFFFFF; font-size: 100%;"> Jan. 9th</span> Due to bad weather conditions, the project '''deadline''' is extended to '''Monday 23:59, 9/1/2017''' for softcopies via email, and '''Wednesday 17:30, 11/1/2017''' for hardcopies. |
− | * <span style="background:#4682B4; color:#FFFFFF; font-size: 100%;"> | + | * <span style="background:#4682B4; color:#FFFFFF; font-size: 100%;"> Jan. 6th</span> Some clarifications have been added to the [[Media:ele523e-2016-fall-final-project.pdf | '''the final project''']]. |
− | * <span style="background:#4682B4; color:#FFFFFF; font-size: 100%;"> Sept. | + | * <span style="background:#4682B4; color:#FFFFFF; font-size: 100%;"> Dec. 12th</span> [[Media:ele523e-2016-fall-final-project.pdf | '''The final project''']] has been posted that is due '''9/1/2017''' before 13:30. |
+ | * <span style="background:#4682B4; color:#FFFFFF; font-size: 100%;"> Dec. 12th</span> [[Media:ele523e-2016-fall-student-presentations.pdf | '''Presentation rules and schedules''']] have been posted. | ||
+ | * <span style="background:#4682B4; color:#FFFFFF; font-size: 100%;"> Nov. 20th</span> [[Media:ele523e-2016-fall-hw-04.pdf | '''The fourth homework''']] has been posted that is due '''5/12/2016''' before 13:30. | ||
+ | * <span style="background:#4682B4; color:#FFFFFF; font-size: 100%;"> Oct. 30th</span> [[Media:ele523e-2016-fall-hw-03.pdf | '''The third homework''']] has been posted that is due '''21/11/2016''' before 13:30. | ||
+ | * <span style="background:#4682B4; color:#FFFFFF; font-size: 100%;"> Oct. 17th</span> [[Media:ele523e-2016-fall-hw-02.pdf | '''The second homework''']] has been posted that is due '''31/10/2016''' before 13:30. | ||
+ | * <span style="background:#4682B4; color:#FFFFFF; font-size: 100%;"> Oct. 2nd</span> [[Media:ele523e-2016-fall-hw-01.pdf | '''The first homework''']] has been posted that is due '''17/10/2016''' before 13:30. | ||
+ | * <span style="background:#4682B4; color:#FFFFFF; font-size: 100%;"> Sept. 19th</span> The class is given in the room '''Z2''' (ground floor), EEF. | ||
== Overview == | == Overview == | ||
As current CMOS based technologies are approaching their anticipated limits, emerging nanotechnologies are expected to replace their role in electronic circuits. This course overviews nanoelectronic circuits in a comparison with those of conventional CMOS-based. Deterministic and probobalistic emerging computing models are investigated. Regarding the interdisciplinary nature of emerging technologies, this course is appropriate for graduate students in different majors including electronics engineering, control engineering, computer science, applied physics, and mathematics. No prior course is required; only basic (college-level) knowledge in circuit design and mathematics is assumed. Topics that are covered include: | As current CMOS based technologies are approaching their anticipated limits, emerging nanotechnologies are expected to replace their role in electronic circuits. This course overviews nanoelectronic circuits in a comparison with those of conventional CMOS-based. Deterministic and probobalistic emerging computing models are investigated. Regarding the interdisciplinary nature of emerging technologies, this course is appropriate for graduate students in different majors including electronics engineering, control engineering, computer science, applied physics, and mathematics. No prior course is required; only basic (college-level) knowledge in circuit design and mathematics is assumed. Topics that are covered include: | ||
− | * | + | * Circuit elements and devices in computational nanoelectronics (in comparison with CMOS) including nano-crossbar switches, reversible quantum gates, approximate circuits and systems, and emerging transistors. |
* Introduction of emerging computing models in circuit level. | * Introduction of emerging computing models in circuit level. | ||
* Analysis and synthesis of deterministic and probabilistic models. | * Analysis and synthesis of deterministic and probabilistic models. | ||
* Performance of the computing models regarding area, power, speed, and accuracy. | * Performance of the computing models regarding area, power, speed, and accuracy. | ||
− | * Uncertainty and | + | * Uncertainty and faults: fault analysis and tolerance techniques for permanent and transient faults. |
== Syllabus == | == Syllabus == | ||
− | <div style="font-size: 120%;"> '''Computational Nanoelectronics''', Mondays 13:30-16:30, Room: Z2 (EEF), Fall | + | <div style="font-size: 120%;"> '''ELE 523E: Computational Nanoelectronics''', CRN: 15371, Mondays 13:30-16:30, Room: Z2 (Ground Floor-EEF), Fall 2016. </div> |
− | {| border="1" cellspacing="0" cellpadding="5" " width=" | + | {| border="1" cellspacing="0" cellpadding="5" " width="80%" |
| style="width: 20%;"| | | style="width: 20%;"| | ||
Line 26: | Line 33: | ||
* Email: altunmus@itu.edu.tr | * Email: altunmus@itu.edu.tr | ||
* Tel: 02122856635 | * Tel: 02122856635 | ||
− | * Office hours: | + | * Office hours: 14:00 – 15:00 on Tuesdays in Room:3005, EEF (or stop by my office any time) |
|- | |- | ||
| <div style="font-size: 120%;"> '''Grading'''</div> | | <div style="font-size: 120%;"> '''Grading'''</div> | ||
|| | || | ||
− | * Homework: ''' | + | * Homework: '''20%''' |
− | ** | + | ** 4 homeworks (5% each) |
− | * Midterm Exam: ''' | + | * Midterm Exam: '''20%''' |
− | ** The midterm is during the lecture time on ''' | + | ** The midterm is during the lecture time on '''5/12/2016'''. |
* Presentation: '''20%''' | * Presentation: '''20%''' | ||
Line 43: | Line 50: | ||
| <div style="font-size: 120%;"> '''Reference Books'''</div> | | <div style="font-size: 120%;"> '''Reference Books'''</div> | ||
|| | || | ||
− | * | + | * Waser, R. (2012). Nanoelectronics and information technology. John Wiley & Sons. |
+ | |||
+ | * Iniewski, K. (2010). Nanoelectronics: nanowires, molecular electronics, and nanodevices. McGraw Hill Professional. | ||
− | * | + | * Stanisavljević, M., Schmid, M, Leblebici, Y. (2010). Reliability of Nanoscale Circuits and Systems: Methodologies and Circuit Architectures, Springer. |
* Adamatzky, A., Bull, L., Costello, B. L., Stepney, S., Teuscher, C. (2007). Unconventional Computing, Luniver Press. | * Adamatzky, A., Bull, L., Costello, B. L., Stepney, S., Teuscher, C. (2007). Unconventional Computing, Luniver Press. | ||
− | * | + | * Zomaya, Y. (2006). Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies, Springer. |
− | * | + | * Yanushkevich, S., Shmerko, V., Lyshevski, S. (2005). Logic Design of NanoICs, CRC Press. |
+ | <!-- * Sasao, T. (1999). Switching Theory for Logic Synthesis, Springer. --> | ||
|- | |- | ||
| <div style="font-size: 120%;"> '''Policies'''</div> | | <div style="font-size: 120%;"> '''Policies'''</div> | ||
Line 58: | Line 68: | ||
* Homeworks are due at the beginning of class. Late homeworks will be downgraded by '''20%''' for each day passed the due date. | * Homeworks are due at the beginning of class. Late homeworks will be downgraded by '''20%''' for each day passed the due date. | ||
* Collaboration is permitted and encouraged for homeworks, but each collaborator should turn in his/her own answers. | * Collaboration is permitted and encouraged for homeworks, but each collaborator should turn in his/her own answers. | ||
− | * The midterm is in | + | * The midterm is in '''closed'''-notes and '''closed'''-books format. |
* Collaboration is '''not''' permitted for the final project. | * Collaboration is '''not''' permitted for the final project. | ||
|} | |} | ||
Line 64: | Line 74: | ||
==Weekly Course Plan== | ==Weekly Course Plan== | ||
− | {| border="1" cellspacing="0" cellpadding="5" " width=" | + | {| border="1" cellspacing="0" cellpadding="5" " width="80%" |
| style="width: 20%;"| | | style="width: 20%;"| | ||
Line 71: | Line 81: | ||
|| <div style="font-size: 120%;"> '''Topic'''</div> | || <div style="font-size: 120%;"> '''Topic'''</div> | ||
|- | |- | ||
− | | Week 1, | + | | Week 1, 19/9/2016 || Introduction |
|- | |- | ||
− | | Week 2, | + | | Week 2, 26/9/2016 || Overview of emerging nanoscale devices and switches |
|- | |- | ||
− | | Week 3, | + | | Week 3, 3/10/2016 || Reversible quantum computing, reversible circuit analysis and synthesis |
|- | |- | ||
− | | Weeks 4, | + | | Weeks 4, 10/10/2016 || Molecular computing with individual molecules and DNA strand displacement |
|- | |- | ||
− | | Weeks 5, | + | | Weeks 5, 17/10/2016 || Computing and logic synthesis with switching nano arrays |
|- | |- | ||
− | | Week 6, | + | | Week 6, 24/10/2016 || Probabilistic/Stochastic computing with random bit streams and probabilistic switches |
|- | |- | ||
− | | Weeks 7, | + | | Weeks 7, 31/10/2016 || Approximate computing and Bayesian networks |
|- | |- | ||
− | | Week 8, | + | | Week 8, 7/11/2016 || HOLIDAY, no class |
|- | |- | ||
− | | Week 9, | + | | Week 9, 14/11/2016 || Defects, faults, errors, and their analysis |
|- | |- | ||
− | | Weeks 10, | + | | Weeks 10, 21/11/2016 || Fault tolerance in nano-crossbar arrays |
|- | |- | ||
− | | Week 11, | + | | Week 11, 28/11/2016 || Transient fault tolerance: error detecting and correcting |
|- | |- | ||
− | | Week 12, | + | | Week 12, 5/12/2016 || MIDTERM |
|- | |- | ||
− | | Weeks 13, | + | | Weeks 13, 12/12/2016 || Overview of the midterm, the presentation schedule, and the final project |
|- | |- | ||
− | | Weeks 14, | + | | Weeks 14, 19/12/2016 || Student presentations |
|- | |- | ||
− | | Weeks 15, | + | | Weeks 15, 26/12/2016 || Student presentations |
+ | |||
|} | |} | ||
== Course Materials == | == Course Materials == | ||
− | {| border="1" cellspacing="0" cellpadding=" | + | {| border="1" cellspacing="0" cellpadding="4" " width="80%" |
− | !Lecture Slides !! Lecture Slides !! Homeworks !! | + | !Lecture Slides !! Lecture Slides !! Homeworks !! Presentations & Exams & Projects |
|- | |- | ||
− | | | + | | [[Media:ele523e-2016-fall-w1-introduction.pptx | W1: Introduction]] || [[Media:ele523e-2016-fall-w6-probabilistic-computing.pptx | W6: Probabilistic Computing]] || [[Media:ele523e-2016-fall-hw-01.pdf | Homework 1]] || [[Media:ele523e-2016-fall-student-presentations.pdf | Student Presentations]] |
− | + | ||
− | + | ||
|- | |- | ||
− | | [[Media:ele523e- | + | | [[Media:ele523e-2016-fall-w2-emerging-computing.pptx | W2: Emerging Computing]] || [[Media:ele523e-2016-fall-w7-approximate-computing-and-Bayesian-networks.pptx | W7: Approximate Computing & Bayesian Networks]] || [[Media:ele523e-2016-fall-hw-02.pdf | Homework 2]] || [[Media:ele523e-2016-fall-midterm.pdf | Midterm]] |
− | + | |- | |
− | + | | [[Media:ele523e-2016-fall-w3-reversible-quantum-computing.pptx | W3: Reversible Quantum Computing]] || [[Media:ele523e-2016-fall-w9-fault-analysis.pptx | W9: Faults and Their Analysis]] || [[Media:ele523e-2016-fall-hw-03.pdf | Homework 3]] || [[Media:ele523e-2016-fall-final-project.pdf | Final Project]] | |
+ | |- | ||
+ | | [[Media:ele523e-2016-fall-w4-molecular-computing.pptx | W4: Molecular Computing]] || [[Media:ele523e-2016-fall-w10-w11-fault-tolerance.pptx | W10-W11: Fault Tolerance for Nano Electronics]] || [[Media:ele523e-2016-fall-hw-04.pdf | Homework 4]] || | ||
+ | |- | ||
+ | | [[Media:ele523e-2016-fall-w5-nano-array-based-computing.pptx | W5: Nanoarray based Computing]] || || || | ||
|} | |} |
Latest revision as of 19:26, 14 January 2017
Contents |
[edit] Announcements
- Jan. 14th To see your final grades click here.
- Jan. 9th Due to bad weather conditions, the project deadline is extended to Monday 23:59, 9/1/2017 for softcopies via email, and Wednesday 17:30, 11/1/2017 for hardcopies.
- Jan. 6th Some clarifications have been added to the the final project.
- Dec. 12th The final project has been posted that is due 9/1/2017 before 13:30.
- Dec. 12th Presentation rules and schedules have been posted.
- Nov. 20th The fourth homework has been posted that is due 5/12/2016 before 13:30.
- Oct. 30th The third homework has been posted that is due 21/11/2016 before 13:30.
- Oct. 17th The second homework has been posted that is due 31/10/2016 before 13:30.
- Oct. 2nd The first homework has been posted that is due 17/10/2016 before 13:30.
- Sept. 19th The class is given in the room Z2 (ground floor), EEF.
[edit] Overview
As current CMOS based technologies are approaching their anticipated limits, emerging nanotechnologies are expected to replace their role in electronic circuits. This course overviews nanoelectronic circuits in a comparison with those of conventional CMOS-based. Deterministic and probobalistic emerging computing models are investigated. Regarding the interdisciplinary nature of emerging technologies, this course is appropriate for graduate students in different majors including electronics engineering, control engineering, computer science, applied physics, and mathematics. No prior course is required; only basic (college-level) knowledge in circuit design and mathematics is assumed. Topics that are covered include:
- Circuit elements and devices in computational nanoelectronics (in comparison with CMOS) including nano-crossbar switches, reversible quantum gates, approximate circuits and systems, and emerging transistors.
- Introduction of emerging computing models in circuit level.
- Analysis and synthesis of deterministic and probabilistic models.
- Performance of the computing models regarding area, power, speed, and accuracy.
- Uncertainty and faults: fault analysis and tolerance techniques for permanent and transient faults.
[edit] Syllabus
ELE 523E: Computational Nanoelectronics, CRN: 15371, Mondays 13:30-16:30, Room: Z2 (Ground Floor-EEF), Fall 2016.
Instructor
|
|
Grading
|
|
Reference Books
|
|
Policies
|
|
[edit] Weekly Course Plan
Date
|
Topic
|
Week 1, 19/9/2016 | Introduction |
Week 2, 26/9/2016 | Overview of emerging nanoscale devices and switches |
Week 3, 3/10/2016 | Reversible quantum computing, reversible circuit analysis and synthesis |
Weeks 4, 10/10/2016 | Molecular computing with individual molecules and DNA strand displacement |
Weeks 5, 17/10/2016 | Computing and logic synthesis with switching nano arrays |
Week 6, 24/10/2016 | Probabilistic/Stochastic computing with random bit streams and probabilistic switches |
Weeks 7, 31/10/2016 | Approximate computing and Bayesian networks |
Week 8, 7/11/2016 | HOLIDAY, no class |
Week 9, 14/11/2016 | Defects, faults, errors, and their analysis |
Weeks 10, 21/11/2016 | Fault tolerance in nano-crossbar arrays |
Week 11, 28/11/2016 | Transient fault tolerance: error detecting and correcting |
Week 12, 5/12/2016 | MIDTERM |
Weeks 13, 12/12/2016 | Overview of the midterm, the presentation schedule, and the final project |
Weeks 14, 19/12/2016 | Student presentations |
Weeks 15, 26/12/2016 | Student presentations |
[edit] Course Materials
Lecture Slides | Lecture Slides | Homeworks | Presentations & Exams & Projects |
---|---|---|---|
W1: Introduction | W6: Probabilistic Computing | Homework 1 | Student Presentations |
W2: Emerging Computing | W7: Approximate Computing & Bayesian Networks | Homework 2 | Midterm |
W3: Reversible Quantum Computing | W9: Faults and Their Analysis | Homework 3 | Final Project |
W4: Molecular Computing | W10-W11: Fault Tolerance for Nano Electronics | Homework 4 | |
W5: Nanoarray based Computing |